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A Technique for Mapping Urban Areas and Change Using Integrated 

Remote Sensing and Dasymetric Population Mapping Methods 

 

ABSTRACT 

In recent decades, mapping of urban areas and growth has been a vital tool in facing 

many environmental challenges.  In spite of this, a standard operational definition of 

―urban‖ is lacking in the GIS and remote sensing literature.  Definitions tend to vary 

depending upon the specific application for which information is required.  The purpose 

of this study was to develop a pixel-level dasymetric technique for mapping urban areas 

and their change over time utilizing two fundamental criteria for an urban environment: 

urban population density and the presence of impervious surface.  These sources were 

used complementarily, as remote sensing methods for urban detection neglect well-

vegetated areas with urban population density, while the use of population data alone 

neglects many commercial and industrial areas, blighted or abandoned urban areas, and 

other developed areas where no one resides.  Integrating satellite-derived land-cover data 

with dasymetrically-derived population distribution data, urban areas and change of the 

St. Louis Metropolitan Statistical Area (MSA) from 1990 to 2000 are mapped and 

analyzed.  It was shown that the use of one data source alone detects only roughly 73% of 

the total urban area, which stresses the necessity of using both data sources for urban area 

delineation.  An accuracy assessment was performed on the classification.  Both the 1989 

and 2000 classifications achieved 89.6% accuracy.  The dasymetric results were 

compared with the original 1990 and 2000 census block population data and covered 

82.5% and 84.0% of the same area, respectively.        
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CHAPTER 1: INTRODUCTION 

 

In recent decades, mapping of urban areas and growth has been a vital tool in facing 

many environmental challenges.  Dynamic land-use/land-cover (LULC) change has implications 

for sustainability of development, environmental health, global climate change, ecosystems, and 

food production.  Increasing and migrating population has ramifications for consumption of 

natural resources, local socioeconomics, and commercial and industrial activity.  Yet in spite of 

these associations, a standard operational definition of ―urban‖ is lacking in the GIS and remote 

sensing literature.  The purpose of this research was to develop a dasymetric technique for 

mapping urban areas and their change over time utilizing two fundamental criteria for an urban 

environment: urban population density and the presence of impervious surface.  It is shown that 

use of these data sources together yields much more comprehensive results than when either is 

used alone.      

Many remote sensing studies treat ―urban‖ as equivalent to ―urban land-cover‖ or focus 

on urban phenomena related merely to impervious surface (Grey et al. 2003, Herold et al. 2003a, 

Li and Yeh 1998, Seto and Liu 2003, Wilson et al. 2003).  In fact, one of the main difficulties in 

urban analysis is that there is little consensus as to what constitutes urban land, and definitions 

vary depending upon the specific application of the study (Weber 2001).  This is apparent 

especially in land-cover change detection studies, where ―urban boundaries‖ are assumed to shift 

according to land-cover conversion to impervious surface, a conception that is unidimensional 

and behavioristic.  It does not take into account other important, on-the-ground variables, such as 

the spatial distribution and density of population.  Remote sensing methods for urban detection 

show only areas of increased impervious surface and artificial structures, which neglect well-
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vegetated areas with urban population density.  Classification algorithms used in a plethora of 

studies categorize areas of vegetation in urban environments as non-urban because the spectral 

signatures of those areas are very similar if not identical to those of rural vegetated areas (Haack 

et al. 2000, Masek et al. 2000, Ryznar and Wagner 2001, Gluch 2002, Haack et al. 2002, Grey et 

al. 2003, Herold et al. 2003a and 2003b, Hodgson et al. 2003, Qiu et al. 2003, Seto and Liu 

2003, Thomas et al. 2003, Weber and Puissant 2003, Yang et al. 2003, Zha et al. 2003, Alberti et 

al. 2004, Huang et al. 2007).  In other words, these studies fail to delineate an entire urban area 

by limiting their criteria for an urban environment to the existence of impervious surface.  At the 

same time, urban population distribution and densities may or may not coincide with significant 

areas of human-made structures.  Census data neglect many commercial and industrial areas, 

blighted and abandoned urban areas, and other developed areas where few or no people reside 

such as power plants and isolated industrial facilities.  Examples of these areas in this study area 

include Earth City Industrial Park, large sections of East St. Louis, Illinois, and the Wood River 

oil refinery in Roxana, Illinois.   

Schneider et al. (1377) showed that integration of gridded population data with Moderate 

Resolution Imaging Spectroradiometer (MODIS) and the Defense Meteorological Satellite 

Program’s Operational Linescan System (DMSP/OLS) nighttime lights data ―improves urban 

classification by resolving confusion between urban and other classes that occurs when any one 

of the data sets is used by itself.‖  This study took their integrative methodology as a key 

guideline and presents a technique for mapping urban environments and their change over time.  

Integrating satellite-derived land-cover data with dasymetric population density and distribution 

data, urban areas and change of the St. Louis area from 1990 to 2000 were mapped and analyzed.  
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1.1 Research Objective 

The objective of this study was to develop and validate a technique for mapping urban 

areas and change that integrates data on both urban structure development and population 

density.  The key idea was to demonstrate that use of both sources produces more accurate, 

comprehensive results than either source would alone.  A ―Methodology validation table‖ was 

provided to prove statistically that significant areas of urban land are neglected when one or the 

other input data sources is used alone.   

 

1.2 Justification 

Justification for this study is twofold.  First, as stated, accurate and comprehensive 

mapping of urban areas and change is crucial for, among other things, sustainable and 

environmentally-conscious development and natural resource management.  Second, there is 

need to demonstrate the impact on urban area and change studies of not complementing 

remotely-sensed data with on-the-ground data such as population data.  Though census data in 

the United States are collected only decennially and are generalized over zones, population data 

are a vital data source for analysis of the spatial extent of an urban area.  Furthermore, extraction 

of population data from such generalized zones is possible by certain assumptions in the use of 

dasymetric mapping, which, in this study, is used to project population figures from the census 

block level to the pixel resolution of the remotely-sensed data.  

 

1.3 Definition of Dasymetric Mapping  

Dasymetric mapping uses secondary or multiple data sources to infer information from a 

primary data source, frequently to reproject the primary data at a finer scale or in more detailed 
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manner.  A typical example is the use of land-cover data to infer where population likely resides 

within a general population zone, such as a census block, block group, or tract.  Land-cover 

categories typically coincident with residences—e.g., impervious surface as opposed to wetlands 

or forest—are assumed to be areas where much of the population of the zone reside.  The two 

data sources—the land-cover data and the population zone data—are then combined in a 

complex, mathematical way to produce more precise estimations as to where population resides.  

It is important to note that dasymetric mapping works from assumptions rather than verified 

information because the latter is lacking.  The assumption in the example above is that 

population likely resides in areas of impervious surface land-cover.  The verified information 

that is lacking is population data that are finer or more detailed than that at the general 

population zone.   

 

1.4 Study Area 

As of 2000, the St. Louis Metropolitan Statistical Area (MSA) (figure 1) had a population 

of 2,603,607, up from 2,492,525 in 1990, making it the 18
th
 largest metro area in the US in 2000 

(US Census Bureau Population Division 2011a).  The City of St. Louis, with a 2000 population 

of 348,189, lies just south of the confluence of the Mississippi and Missouri Rivers, on the 

border of Missouri and Illinois (US Census Bureau Population 2011b).  As of 2000, the 

metropolitan area consisted of 12 counties: on the Missouri side, Franklin, Jefferson, Lincoln, St. 

Charles, St. Louis City, St. Louis County, and Warren; on the Illinois side, Clinton, Jersey, 

Madison, Monroe, and St. Clair (US Census Bureau Geography Division 2011). 
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1.4.1 The Fringe Growth and Central City Decline of the St. Louis Area 

Like many American cities in the latter half of the twentieth century, the central city of 

St. Louis experienced steep economic decline.  Even in 1936, the City Plan Commission for St. 

Louis concluded, ―…if adequate measures are not taken, the city is  

 

 
Figure 1. The St. Louis Metropolitan Statistical Area (MSA) 

 

faced with gradual economic and social collapse.  The older central areas of the city are being 

abandoned and this insidious trend will continue until the entire city is engulfed‖ (Gordon 2008 

p.8).  The trend did continue.  White flight and suburbanization occurred in St. Louis in 

somewhat purer and less ambiguous form than anywhere else (Gordon 2008 p.25).  In 1990, the 

city earnings tax of 1.0%, which targets commuters who live outside the city, generated more 
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suffered in recent years, as a host of corporate mergers and buyouts has signified St. Louis’ 

declining role in the national and international economy, sending more money out of the area 

than would have been kept in: McDonnell-Douglas with Boeing, Ralston Purina with Nestle, 

Trans World Airlines with American Airlines, Famous Barr with Macy’s, Mallinckrodt with 

Tyco, Jones Pharma with King Pharmaceuticals, Monsanto with Pharmacia/Upjohn, and most 

recently in 2008, Anheuser-Busch with InBev.   

Ironically, however, it is this decline, both economic and in general living conditions and 

quality of life, along with the typical, predictable growth on the urban fringes of any large metro, 

that makes St. Louis an apt study area for this project.  It was chosen because: 

(1) Much of the area’s population resides in suburbs and exurbs rather than the central 

city.  According to the 2000 Census, only 12.9% of the metro lived in the central city 

of St. Louis, as compared to Indianapolis’ 51%, Chicago and Kansas City’s 32%, 

Detroit’s 21%, and Cincinnati’s 16.5%.   

(2) Many of those suburbs are well-vegetated. 

(3) Areas of decline and physical ruin are contrasted with areas of rapid development.   

 

Traits two and three particularly make this urban area vulnerable to the pitfalls of utilizing only 

remotely-sensed data, because vegetation can cover up impervious surface, and studies have 

shown it is difficult to accurately measure population growth and exodus by satellite imagery 

(Iisaka and Hegedus 1982; Langford et al. 1991; Lo 1995; Webster 1996; Harvey 2002a & 

2002b; Li and Weng 2005; Liu et al. 2006; Wu et al. 2006).  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Remote Sensing Techniques in Mapping Urban Areas 

In the past two decades, a variety of methods have been used to map urban areas.  A 

number of studies have used nighttime lights imagery from the DMSP (Henderson et al. 2003, 

Imhoff et al. 1997, Sutton 1998 & 2003, and Lo 2001 & 2002).  The value of this data source lies 

in the idea that lighting is coincident with urban areas.  However, there are a number of 

drawbacks to it.  First, spatial resolution is very low at 2.7 km.  Second, the data has a blooming 

effect which overestimates city size even when a fixed radiance value is determined from 

comparison with, e.g., census urbanized area data.  The fixed radiance value is intended to be a 

standard threshold to determine where the urbanized/less-urbanized boundary is for all cities in a 

global region, such as North America.  Thus the nighttime lights data not only exaggerate the 

area they supposedly represent but also cannot be used alone to accurately demarcate boundaries 

(Imhoff et al. 1997, Schneider et al. 2003).  Third, Schneider et al. (2003, p.1378) pointed out 

that DMSP/OLS data ―do not necessarily represent the built environment or settlement patterns.  

In particular, brightly lit agricultural areas and non-urban light sources such as gas flares and 

fires are captured in these datasets.‖    

Another method arising in recent years is the use of Radio Detection and Ranging 

(RADAR) and Light Detection and Ranging (LiDAR) data to map urban morphology (Haack et 

al. 2000 & 2002, Grey and Luckman 2003, Hodgson et al. 2003, Huang et al. 2007).  Grey and 

Luckman (2003) used phase coherence between pairs of Synthetic Aperture Radar (SAR) images 

to determine urban areas.  Whereas vegetation grows and withers throughout the seasons, urban 

structures do not.  They are coherent, i.e. constant, between two images.  That is, impervious 

surface appears on RADAR the same in the winter as it does in the summer.  The single- or 



15 
 

double-bounce backscattering of man-made structures also makes urban areas detectable.  In 

other studies, RADAR or LiDAR has been used in combination with optical satellite data.  

Huang et al. (2007) found that fusion of Landsat and Radarsat data improved classification 

accuracy by 10 percent.  Hodgson et al. (2003) used LiDAR in combination with 

orthophotography to produce a regression line slope for detecting impervious surfaces showing a 

near-perfect relationship between observed and predicted imperviousness (y = 1.016).  Germaine 

and Hung (2011) designed Knowledge Based Expert System (KBES) rules from LiDAR data to 

increase the accuracy of an Iterative Self-Organizing Data Analysis Techniques (ISODATA) 

classification from 91% with a kappa of 82.0% to 94% and a kappa of 87.9%.  Despite these 

boosts in classification accuracy, however, as a stand-alone remote sensing method for urban 

delineation, RADAR and LiDAR inherit the drawbacks mentioned in the introduction of optical 

remote sensing methods: they may not detect well-vegetated areas of urban population density.   

Predictably, the existing literature for the use of daytime optical satellite imagery is 

substantial (Li and Yeh 1998, Masek et al. 2000, Gluch 2002, Hung and Ridd 2002, Grey et al. 

2003, Herold et al. 2003a & 2003b, Seto and Liu 2003, Thomas et al. 2003, Weber and Puissant 

2003, Yang et al. 2003, Zha et al. 2003, Wilson et al. 2003, Alberti et al. 2004).  Li and Yeh 

(1998) classified urban land-cover from Thematic Mapper (TM) imagery to monitor urban 

expansion in the Pearl River Delta, China.  Others have taken on more refined methodologies, 

such as altering classifiers for higher classification accuracy.  Seto and Liu (2003) used an 

artificial neural network, rather than a more conventional technique like the Bayesian Maximum-

Likelihood Classifier (MLC).  Others implemented a Normalized Difference Built-up Index 

(NDBI) with accuracy of 92.6% for automated mapping of urban areas (Zha et al. 2003).  Hung 

and Ridd (2002) developed a sub-pixel classification approach that iteratively adjusts 
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percentages of land-cover according to a linear mixture model.  This allowed for classification of 

land-cover by percentage of land-cover in a pixel.  In another study, the use of spatial metrics 

and image texture proved valuable in extracting urban land use from images (Herold et al. 2003a 

& 2003b).   

A handful of studies have used GIS and remote sensing data and methods together to 

delineate an urban area (Chen et al. 2000, Ryznar and Wagner 2001, Abed and Kaysi 2003, Qiu 

et al. 2003, Schneider et al. 2003).  Abed and Kaysi (2003) used intensity of economic activity 

as a factor, defined as number of employees in a statistical zone divided by housing units, 

divided by surface area of the zone.  These data were utilized along with density of the built-up 

area of Beirut and fuzzy classification of SPOT pixels for relative variety or richness of land use.  

Ryznar and Wagner (2001) used demographic data from the 1970, 1980, and 1990 censuses to 

correlate with the output from Normalized Difference Vegetation Index (NDVI) images of inner 

city and suburban Detroit.  Results showed strong negative correlation between population and 

vegetation growth in the inner city, verifying abandonment and overgrowth of vegetation around 

and on urban structures.  They also showed strong positive correlation for the suburbs, indicating 

land-cover conversion from agricultural areas to residential lawns and vegetated areas.  To sum, 

these studies showed that the integration of population data enhances accuracy in mapping urban 

areas and growth.   

 

2.2 Methods for Estimation of Population Using GIS and Remote Sensing 

Some studies have focused on estimation of population or population density rather than 

on delineation of urban boundaries.  The methods used can be grouped into two categories: 

statistical modeling and areal interpolation.  Statistical modeling infers relationships between 
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population and other variables to estimate the population for a given area.  Areal interpolation 

involves transforming data from one set of spatial units to another.  Dasymetric mapping is a 

form of areal interpolation.    

 

2.2.1 Statistical Modeling of Population 

Five types of approaches have been developed within the statistical modeling method, 

and they are based on the relationship between population and 1) urban areas, 2) land use, 3) 

dwelling units, 4) image pixel characteristics, and 5) other physical or socioeconomic 

characteristics.   

Urban nighttime lights have been used not just to delineate urban boundaries but also to 

estimate population.  Prosperie and Eyton (2000) found a correlation coefficient of R
2 

= 0.974 

between light volumes and populations of 254 Texas counties using DMSP imagery.  Also, Lo 

(2002) determined a correlation coefficient of 0.91 between the light volumes of 35 Chinese 

cities and their non-agricultural populations.  Generally, however, correlating different types of 

land use with population produces better results than use of DMSP data.  Weber (1994) classified 

land use from SPOT HRV XS images for Strasbourg, France and performed a regression 

analysis of population counts and land use areas obtaining a correlation coefficient of R
2
 = 0.91.  

Applying the regression model, he estimated the total population of the city to be 7.91% below 

the actual census population.  In a similar study, Lo (2003) used a logarithmic transformed 

allometric growth model and estimated population in Atlanta with an overall underestimate of 

8.07%.   

Furthermore, population has been determined by multiplying the total number of 

dwelling units with the number of persons normally living in a dwelling unit.  Maantay et al. 
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(2007) used cadastral data of New York City to estimate population achieving an R
2
 value of 

0.99.  Lwin and Murayama (2009) used areametric and volumetric methods to estimate 

population within buildings.  The areametric method does not require data on number of building 

floors and was suitable for low-rise buildings in rural areas, while the volumetric method does 

require data on number of floors and was suitable for high-rise buildings, especially in 

downtown areas.  A regression analysis was performed comparing estimated population to actual 

population with an R
2
 = 0.80 for the areametric method and R

2
 = 0.95 for the volumetric method.  

Wu et al. (2006) developed a deterministic model for sub-block-level population estimation 

using GIS data on building volumes and housing statistics derived from the census.  Assessment 

of the results showed that the smaller the area, the higher the error, with an average percent error 

of just 0.11 percent for areas equal in size to that from which they were disaggregated (the block 

level), 15 percent for areas half of a block in area, and 35 percent for areas five percent of a 

block area.   

A number of studies have used image pixel characteristics to estimate population density.  

Aggregated predictor variables in remote sensing have included mean reflectance of individual 

spectral bands (Iisaka and Hegedus 1982; Lo 1995; Harvey 2002a & 2002b), numbers of pixels 

in various land use categories (Langford et al. 1991; Lo 1995), measures of variability and image 

texture (Webster 1996; Harvey 2002a and 2002b), and various band-to-band ratios and other 

mathematical transformations of the multispectral data (Harvey 2002a and 2002b).  These 

studies demonstrated a significant correlation between population and remote sensing indicators, 

with values for R
2
 in the 80 to 90 percent range.  Harvey (2002b) developed an expectation-

maximization algorithm to iteratively regress pixel population on spectral indicators and re-

estimate pixel population with 16 percent error for one study area and 21 percent for another.  
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Wu et al. (2006) used image texture statistics of semi-variance to estimate population for 

residential land use in the Austin, Texas area with an overall mean absolute relative error 

(MARE) of 12 percent.  Others encourage using image pixel characteristics with census data to 

achieve higher accuracy.  Liu et al. (2006) found that use of a gray-level co-occurrence matrix 

(GLCM), semi-variance, and spatial metrics yielded varying correlations with population 

density, the highest being the spatial metrics method.  They concluded that the correlation 

between image texture and population was not strong enough to predict residential population, 

however texture does provide a base to refine census data.  Also, Li and Weng (2005) used 

textures, temperature, and spectral signatures to boost an estimation of the population of 

Indianapolis in 2000 to 96.8 percent accuracy.  In a review of the field, Wu et al. (2006 p.69) 

concluded that ―more studies are needed before remote sensing can be applied to population 

estimation on an operational basis.‖ 

Finally, numerous other physical and socioeconomic variables can also be incorporated 

for population estimation.  Liu and Clarke (2002) correlated population in urban areas with 

distance from the Central Business District (CBD), accessibility to transportation systems, slope, 

and the time when the residential community was first built.  Qiu et al. (2003) modeled 

population growth in the Dallas-Ft.Worth Metroplex from 1990 to 2000 using GIS-derived road 

development measurements.  Also, the Landscan Global Population Project uses light volume 

from nighttime imagery, land cover, and other information about demography, topography, and 

transportation networks to estimate population at a 30 x 30 second resolution (Dobson et al. 

2000).   
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2.2.2 Dasymetric Mapping of Population 

Despite the prolific use of statistical modeling methods, ―the dasymetric method is 

commonly regarded as a more accurate approach, provided that the used ancillary information 

gives a truthful description of where people actually live‖ (Wu et al. 2006 p.69).  The literature 

on dasymetric mapping of population, however, is comparatively limited.  The reason for this, 

conjectured among several authors, is the inherent difficulty and lack of standard methods in 

producing dasymetric versus choropleth maps (Maantay et al. 2007).  As stated, dasymetric 

mapping uses secondary or multiple data sources to infer information from a primary data 

source, frequently to reproject the primary data at a finer scale or in more detailed manner—a 

conjunction of data sources in a complex way.  Despite the rigors involved with dasymetric 

mapping, there is some valuable research upon which the methodology for this study builds.  

Maantay et al. (2007) proposed a Cadastral-based Expert Dasymetric System (CEDS), 

whereby Census tract population data is disaggregated to parcels according to number of 

residential units and residential areas of parcels.  The authors claimed dasymetric studies using 

land-use/land-cover (LULC) data are highly inaccurate relative to their own, however, their 

technique has several drawbacks.  First, for areas ranging from multiple counties to the size of a 

metropolis or region, the residential unit data would have to be collected from multiple 

governmental sources, with perhaps different levels of data completion, and merged seamlessly, 

which could take considerably more time and manual work than acquiring remotely-sensed 

imagery.  Second, using their methodology, data at a resolution finer than TM pixels would 

likely only be gained in high-density urban environments (such as their study area, New York 

City) and would not be useful for broader study areas including suburbs and exurbs.  Parcels 

vary in size, while pixels are a constant area.  Also, parcels are an arbitrary boundary and are 
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subject to all Modifiable Area Unit Problem (MAUP) issues.  This is a significant problem for all 

areas not of high-density urban LULC because generalization would result within parcels, likely 

more than within moderate- or high-resolution pixels.   

In contrast to parcels, Holloway et al. (1999) used LULC data as the ancillary data source 

for producing dasymetric maps of population in Missoula County, Montana.  Elaborate 

explanation of their main equation was lacking, but Mennis (2003), whose equation is very 

similar, elaborates at length.  Kraus et al. (1974) and Mennis (2003) adopted more rigorous 

methodologies than Holloway et al. (1999) by determining relative density assumptions 

according to the results of empirical sampling.  Relative density, hereafter RDensity, is the 

average percentage of population in a general area estimated to be in a given land-use/land-cover 

category.  Eicher and Brewer (2001) determined RDensity based on their empirical background 

of the study area. Langford et al. (1991) and Yuan et al. (1997) determined RDensity through 

regression analyses.   

To conclude this section, no literature was found which attempted to integrate 

dasymetrically-derived urban population density and urban land-cover to achieve composite 

results delineating an urban area and its change.  Also, no literature was found using blocks as 

the initial enumeration unit from which disaggregation occurs to a finer spatial resolution (pixels 

or parcels in some cases, for instance).  This study is intended to take an initial step in filling this 

gap in the literature. 

 

  



22 
 

CHAPTER 3: METHODOLOGY 

 

The methodology for this study had three phases: 1) classification of urban land-cover 

(impervious surface) from remotely-sensed imagery, 2) dasymetric mapping of urban areas 

according to population, and 3) integration of these outputs to produce comprehensive urban 

area raster maps and a change analysis from 1990 to 2000.  A flowchart is given for ease of 

understanding (figure 2).   

 

 
Figure 2. Research framework 
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3.1 Data Sources and Analysis Extent 

Two Landsat TM and two Enhanced Thematic Mapper plus (ETM+) satellite images 

were used, dated October 4 and 11, 1989 and October 2 and 9, 2000, respectively.  The October 

11 and October 9 images covered the western 90% of the study area (Path 24, Row 33), while the 

October 4 and October 2 images covered the far eastern portion of the metro area (Path 23, Row 

33).  These along with the large-scale DOQs for ground truth came from the United States 

Geological Survey (USGS).  The DOQs were selected randomly, covered the entire range of 

possible land-covers, and were reasonably dispersed throughout the analysis extent.  They were 

identified by the municipal body nearest to or making up most of the image.  DOQs from 

February 20, 1990 were of Chesterfield and O’Fallon (MO) while DOQs from April 8, 1990 

were of Florissant and Webster Groves.  DOQs from April 2, 1998 were of Granite City, 

Cahokia, Webster Groves, and Alton, while DOQs from March 29, 1999 were of Oakville and 

Kampville.  Census block and summary tape file (STF) data for the 1990 and 2000 censuses 

came from the US Bureau of the Census.  The STFs contained population data that were joined 

to the geometric TIGER files.   

The analysis extent (figure 3) was determined using the Census’ St. Louis Urbanized 

Area (UA) in 2000.  A UA is a densely settled area containing at least 50,000 people, while an 

Urban Cluster (UC) has that between 2,500 and 49,999 population.    Both consist of ―core 

census block groups or blocks that have a population density of at least 1,000 people per square 

mile, and surrounding census blocks that have an overall density of at least 500 people per 

square mile‖ (US Census Bureau Geography Division 2009).  First, all UAs or UCs within 5 

miles of the St. Louis UA were selected.  Then this selection was buffered by 5 miles to arrive at 

the full analysis extent.   
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UAs/UCs were used instead of the metropolitan area because the latter would include 

significant amounts of unambiguously rural land which would heavily skew RDensity 

estimations and thus the final results.  The purpose was to include all areas that could possibly 

include urban development or population density near the urban-rural fringe of the St. Louis 

urban area, and no other outlying areas. 

 

3.2 Classification 

The first task was to acquire, import, and stack the TM/ETM+ imagery using ERDAS 

Imagine.  The USGS had already geometrically corrected the imagery, so there was no need to 

shift the image to its appropriate coordinates.  Atmospheric correction 

 

 
Figure 3. Analysis extent 

was foregone because disparities in pixel values between images of the same feature were 

negligible.  For example, the pixel value for a downtown building in 1989 was equivalent or 
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nearly equivalent (+/- 3 pixel values) to the corresponding pixel value for that building in 2000.  

Next, the ISODATA algorithm was used to produce an unsupervised classification with 125 

classes.  These were then manually classified into the four land-cover categories: impervious 

surface, vegetation, soil/bare earth, and water. 

Because a single image did not cover the entire study area, the far eastern portions of the 

study area in Illinois were mosaicked in after classification.  Mosaic after classification produced 

a more accurate classification than before because of differences in atmospheric attenuation 

between the images.  Rather than attempt atmospheric correction between images after mosaic, it 

was easier to classify the images from their original values, then mosaic.   

Figures 4 and 5 show the classification results of late 1989 and 2000, which were used 

both as the land-cover dataset in the dasymetric mapping phase and as the land-cover input 

component in the integration phase.  Though it does not factor into the rest of the study, a change 

matrix was run just to visualize areas of conversion to impervious surface between 1989 and 

2000.  This was accomplished through the Matrix Union function on the Raster ribbon.  

Conversion to impervious surface and areas remaining impervious surface were isolated from the 

matrix by symbolizing those layers as black and gray, respectively, and not symbolizing any 

other layers (figure 6).   
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Figure 4. Classification of 1989 TM imagery 

 
Figure 5. Classification of 2000 ETM+ imagery 



27 
 

3.3. Dasymetric Mapping 

The second part of the methodology was the dasymetric population mapping, using the 

classified rasters generated above.  A modified version of the equation in Holloway et al. (1999) 

was used to compute population for each land-cover pixel.  This is expressed in Equation (1).   

P = ((Ri * N) * 30 * 30) / (AT * E)  (1) 

 

Where,  

P is the population of a pixel, 

Ri is the RDensity (relative density) of a pixel with land-cover type i.  It is an 

assumption: the assumed percentage of the population for a given land-cover 

category.  

 
Figure 6. New impervious surface 1989 - 2000 
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N is the actual population of the block. 

AT is the total area of the pixels in the block. 

E is the expected population of the block calculated using the relative densities.  E 

equals the sum of the products of RDensity and the proportion of each land-cover 

type in each block.  This coefficient will be explained in detail later in this 

section. 

 

Census block data for both 1990 and 2000 were queried according to those blocks that 

spatially intersected the analysis extent.  Some manual work was required to join all STF data 

(i.e., the population totals) to the shapefiles.  Field lengths and types were not identical, so 

conversion of the full Federal Information Processing Standards (FIPS) codes to a common field 

type and re-concatenation was necessary.  Once this was complete and all STFs were joined to 

the block shapefiles, the process of determining the values of the variables of Equation (1) were 

begun.  

The first task was to determine Ri, or RDensity, which varies based on locale.  The 

concept is that total population for each land-cover can be calculated for the locale, and then 

percentages of the locale’s total population for each land-cover can be calculated from those.  In 

other words, population is totaled for each land-cover, and proportions of population per land-

cover for the entire analysis extent are determined.  These percentages were then used, along 

with actual block populations, to distribute population data on a per-pixel basis.  Specifically, 

this was accomplished as follows: 

1) Using the ―tabulate area‖ tool in ArcToolbox, calculate the percentage share in area 

of each land-cover per block.  This produces a table with four fields that are 
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automatically named according to the field used to tabulate the area, in this case the 

―value‖ field, and the numeric value assigned to each land-cover.  These fields are 

VALUE_1 (urban land-cover), VALUE_2 (vegetation), VALUE_3 (soil), and 

VALUE_4 (water).  The values for these fields are the square area in meters of each 

land-cover in the block. 

2) Join the output table to the blocks shapefile. 

3) Create a new field called AREA_SUM and calculate it as the sum of the land-cover 

area in the block (VALUE_1 + VALUE_2 + VALUE_3 + VALUE_4).  

4) Create four new fields, name them USHARE (for ―urban share‖), VSHARE, 

SSHARE, and WSHARE, and derive the percentages of each land-cover in the block 

by dividing VALUE_1 by AREA_SUM for USHARE, VALUE_2 by AREA_SUM 

for VSHARE, and so forth. 

5) Create four new fields, name them UPOP, VPOP, SPOP, and WPOP, and calculate 

them by multiplying the percentages of each land-cover in the block by the 

population of the block—for example, for UPOP, multiply USHARE times POP2000.    

6) Sum the population of each land-cover. 

7) Divide each sum by the total population for all land-covers to determine the 

percentage share of population for each land-cover in the analysis extent.   

8) The results can be checked by comparing the total population for all land-covers with 

the total population in the original blocks dataset.  If they are equivalent, the results 

are accurate. 
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This produced the following RDensity assumptions for 1990: 68% urban, 27% vegetation, 5% 

soil, and 0% water/wetland (table 1).  For 2000, it produced: 70% urban, 27% vegetation, 2% 

soil, and 1% water/wetland.  The 1% of population in water/wetland areas was due to water 

forming some of the land-cover of blocks with population. 

It should be emphasized that RDensity is an average derived from the entire analysis 

extent.  For instance, for the 2000 urban RDensity value of 70%, a largely abandoned 

neighborhood in north St. Louis city and a high density city block in the Central West End 

neighborhood contribute unequally to the 70% fraction.  Both areas are of urban land-cover but 

do not contribute equally to the sum of population for the urban land-cover across the study area.  

Nonetheless, the 70% factor is then applied back on both areas, indiscriminately, in the equation.  

One might think that this translates into under- or overestimating blocks that are statistical 

outliers for their land-cover.  However, this effect is minimized by the values which the 

RDensity factors are multiplied by—the populations of the block.  Furthermore, on the scale of 

the entire study area, this method provides the most balanced results.  
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Table 1.  RDensity values 

urban vegetation soil water TOTAL

1990 1,542,957 608,703 106,838 2,967 2,261,465

percentage 68% 27% 5% 0%

2000 1,640,646 638,804 52,443 9,549 2,341,442

percentage 70% 27% 2% 1%

LAND-COVER

   
 P

O
PU

LA
TI

O
N

 

 

The next step was to determine the other variables of Equation (1).  Rasters were 

produced of both RDensity and block population.  The RDensity raster was a raster of land-cover 

with the RDensity percentages (e.g., 68, 27, 2…) as the values of each land-cover category.  The 

block population raster was a raster of the census blocks with the population as the value for 

each pixel of the block.  To calculate E, the expectation of what population a block should have 

based on RDensity and its land-cover share, a raster of FIPS codes was produced.  (FIPS codes 

are unique block IDs.)  Then the area of each land-cover was tabulated per block (i.e., per FIPS 

code) in square meters by using the FIPS raster as the zonal dataset.  Percentages were derived 

from the area numbers by adding five fields: total, urban, vegetation, soil, and water.  The 

―Total‖ field was calculated for the total square meters tabulated for the block, and the other 

urban, vegetation, soil, and water fields were calculated as the quotient of the tabulated area of 

the given land-cover over the ―Total‖ field.  An ―Expect‖ field was then calculated by 

multiplying the land-cover share of a block by RDensity.  Equation (2) shows how the ―Expect‖ 

field was calculated for 2000.  

Expect = urban * 70 + vegetation * 27 + soil * 2 + water * 1  (2) 
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For example, this would produce an expect value of 27 persons for a block that had a 

land-cover share of 100% vegetation (1 * 27 = 27).  For a block that is 1/5th urban and 4/5ths 

vegetation it produces an expect value of 53.6 (0.2 * 70 + 0.8 * 27 = 14 + 21.6 = 35.6).  For a 

block that is 3/8ths urban, 4/8ths vegetation, and 1/8th soil, it produces 40 (0.375 * 70 + 0.5 * 27 

+ 0.125 * 2 = 26.25 + 13.5 + 0.25 = 40).     

To create rasters of the final two variables, the area of each block and the expected 

population of each block, the tabulate area table with the ―Expect‖ field was joined to the main 

shapefile containing all blocks.  A raster was created of the total area in a block (blockarea).  

This variable is for data standardization by area, to determine the population count per square 

meters in the block.  A raster was also created of the expected population of a block 

(blockexpect).  These were the final two variables to determine before calculation of Equation 

(1).  The final calculation can be expressed in Expression (1): 

Rdensity * blockpopulation * 30 * 30 / (blockarea * blockexpect)  (1) 

 

The logic of this expression is as follows.  As an example, assume the following values 

for Expression (1): 

 

68 * 422 * 30 * 30 / (46,800 * 68)    

 

If one ignores the 30 * 30 temporarily, this equation is easier to digest.  RDensity is a factor, for 

example, urban, so its value is 68.  That is multiplied by the population of the block, 422.  

Looking at the denominator, the area of the block is 46,800 square meters.  That is multiplied by 

the expect value, also 68.  The 32s cancel out.  What is left is the block population over the block 
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area: 422 / 46,800.  This is a measure of persons per square meters.  But it is not at the pixel 

level, which is the geometric unit corresponding to our tabular data here, the data for the pixel.  

In this state, it is at the block level.  The entire expression must be divided by the area of the 

pixel: 30 * 30.  This is accomplished by multiplying the numerator by the square meters of the 

pixel, 900.  The equation itself makes little sense when its relationship to the pixel is not 

considered, but insofar as it is applied in the map, it is apparent that the numerator must be 

multiplied by the factor of a pixel’s area.  Thus 422 is multiplied by 900 which equals 379,800.  

That is divided by 46,800 which equals 8.12 persons for that pixel.   

Figures 7 and 8 show the dasymetric results for both 1990 and 2000.  To indicate only 

urban areas, all cells calculated to be below 500 persons per square mile—the Census definition 

for outlying areas of an Urban Cluster, which is ―the lesser urban‖ of the two urban categories—

were reclassified to zero.  The conversion of 500 people/square mile to the pixel level using 30 x 

30-meter imagery is 0.176 persons/pixel.   

As to verifying volume-preservation (the so-called pycnophylactic property) of the 

disaggregated population totals from blocks to pixel, calculation of zonal statistics for blocks on 

the output population rasters through Spatial Analyst produced equivalent population values to 

original block population values.  That is, a population value for any given block in the original 

census data was equivalent to the sum of population values for all pixels in that original block.  

This verified that all population values going into the disaggregation appeared in the results (i.e., 

that no population was effectively created or disappeared).  
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Figure 7. Urban population density in 1990 

 
Figure 8. Urban population density in 2000 
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For visualization purposes, a raster showing change in density was created (figure 9).  

Unlike change in impervious surface as shown in figure 6, this raster map shows exodus and 

abandonment of areas.  Whereas showing increase in impervious surface is an attempt, among 

other things, to infer areas of increased population or ―in-migration‖ by detecting newly built 

subdivisions, increase in population density shows it outright, without inference.  

 

 

 
Figure 9. Change in urban population density 1990 – 2000 
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3.4 Integration 

The third part of the methodology was integration of the land-cover and population 

rasters.  Both the 1990 and 2000 land-cover and 1990 and 2000 population rasters were 

reclassified to 1 or 0 for urban or non-urban areas, respectively.  A raster calculation was 

performed adding the two different sources for each set of years, i.e. 1990 land-cover + 1990 

population density; 2000 land-cover + 2000 population density.  This produced non-urban areas 

(0), urban areas by land-cover or population density, but not both (1), and urban areas by both 

criteria (2).  Both value 1 and value 2 were then reclassified to value 1 (as urban area), and 

comprehensive urban area maps for both 1990 and 2000 were produced, as shown in figures 10 

and 11.  For change between the urban area rasters, the 2000 raster’s urban areas were first 

reclassified to 2, then the 2000 raster was subtracted by the 1990 raster.  The value -1 

symbolized areas converting from urban to non-urban, 0 non-urban with no change, 1 urban with 

no change, and 2 non-urban to urban.  Figure 12 shows the final comprehensive change map 

1990 - 2000.    

 



37 
 

 
Figure 10. Comprehensive urban areas 1990 

 
Figure 11. Comprehensive urban areas 2000 
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Figure 12. Comprehensive urban areas change 1990 – 2000 
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CHAPTER 4: ANALYSIS RESULTS 

 

4.1 Where was the Change and Why? 

Most of the differences between urban areas in 1990 and 2000 are on the urban/rural 

fringe.  Indeed, since the 1980s, development on the rural fringes has expanded to cover more 

square miles than central cities, older suburbs, and edge nodes combined (Hayden 2003).   

To determine why these areas experienced conversion—by land-cover or urban 

population density—the urban change raster was reclassified into two different datasets: one 

consisting just of non-urban to urban conversion, the other of urban to non-urban conversion.  

These were both then converted to vector and intersected with the following datasets based on 

which of the two types of land-cover conversion they showed: 

a) if urban to non-urban conversion, intersected separately with each of the 1990 urban 

by population and urban by land-cover rasters.  

b) if non-urban to urban, intersected separately with each of the 2000 urban by 

population and urban by land-cover rasters. 

 

As is shown in table 2, conversion to urban was mostly because of conversion to 

impervious surface, composing 59.6% of the total conversion.  This included new and expanded 

industrial parks and commercial developments such as Earth City and the St. Louis Mills 

Shopping Mall, new roads and highways such as I-370, and newly built subdivisions not yet 

housing enough residents to be classified as urban by population (figures 13 - 14).  Some of this 

percentage is reflective of the wide-scale proliferation of ―big box‖ retail in the 1990s.  These are 

stores such as Wal-Mart, Target, Home Depot, Best Buy, Borders, and Barnes & Noble.   
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Table 2. Distribution of urban/non-urban conversion 

TOTAL 142.23 TOTAL 223.99

urban by land-cover 90 96.89 urban by land-cover 00 166.46

urban by population 90 50.64 urban by population 00 112.89

land-cover + population 147.53 land-cover + population 279.35

by both land-cover and population 5.3 by both land-cover and population 55.36

URBAN BY LAND-COVER 90 65.7% URBAN BY LAND-COVER 00 59.6%

URBAN BY POPULATION 90 34.3% URBAN BY POPULATION 00 40.4%

URBAN CONVERSION DISTRIBUTION (in sq mileage)

Urban to Non-urban Non-urban to Urban

PERCENTAGES

 

 

These chain stores are often cited as accountable for the economic devastation of local 

businesses (Hayden 2003).  In fact, the new major shopping center in figure 14 was built to be 

occupied by a Target and a Home Depot.   

The remaining 40.4% of the conversion to urban was due to increase of estimated 

population beyond the threshold for urban population density.  On the Missouri side, there was a 

population boom in the cities of O’Fallon, Lake St. Louis, and Wentzville (figure 15, area 1), 

along with additional growth in the already well-established suburbs of St. Charles and St. 

Peters.  O’Fallon exploded from a population of less than 19,000 to over 46,000 in the 1990s 

(and as of 2009, was projected at nearly 79,000, making it among the fastest growing cities in 

America in the last 20 years).  Wentzville may have owed some of its growth to the relocation of 

a downtown General Motors plant to its eastern edge in the early 1980s, which encouraged 

nearby residential development.  Even the upscale, reputably cloistered community of Lake St. 

Louis experienced some in-migration during this time.  The similarly-affluent city of 

Chesterfield in west St. Louis  
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Figure 13. Non-urban to urban conversion distribution 

 
Figure 14. Example areas converted to urban by land-cover 
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county also experienced growth, but it was Wildwood, incorporated in 1995, that erupted onto 

the map with 32,884 residents in 2000 (area 2).  This sprawling municipality was driven to 

incorporation ―largely by fears that St. Louis County was not willing to sustain 

large-lot single-family residential development‖ (Gordon 2008 p.41).  Population in the exurb of 

Eureka along I-44 also met the threshold density for urban (area 3), as well as unincorporated 

areas in Jefferson County and St. Louis County (area 4).   

On the Illinois side, growth in population also seemed to be primarily dictated by 

proximity to major highways.  The continuous urban swath of Edwardsville, Glen Carbon, 

Maryville, and Collinsville (figure 16, area 1) near I-270 experienced significant growth, as did 

Fairview Heights, O’Fallon, and Shiloh near I-64 (area 2).  The City of Columbia, south off of I-

255, showed several pockets of population exceeding the urban threshold (area 3).    

Conversion to non-urban was dominated by land-cover change as well (figure 17).  An 

estimated 20-25% of this is made up by urban misclassifications in the 1990 classification.  This 

is because of the similar reflectivity of some farmland to certain impervious surfaces.  In fact the 

main difficulty encountered with classification was how different surfaces reflect light similarly 

and thus cause a confused classification.  Shadows of downtown skyscrapers, for instance, were 

often mistaken for water and required manual correction (by converting the pixel value to an 

impervious surface value averaged for the pixel neighborhood).  Significant areas of floodplain 

were confused as areas of impervious surface as well. 
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Figure 15. Example areas converted to urban by population (Missouri) 

 
Figure 16. Example areas converted to urban by population (Illinois) 
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Figure 17. Urban to non-urban conversion distribution 

 

Example areas showing conversion from impervious surface to non-urban include  trailer 

parks in St. Charles County, neighborhoods near Lambert-St. Louis Airport bought out by the 

Airport Authority for future expansion, the majority of the City of Kinloch which experienced a 

mass exodus and thus unchecked vegetative growth over impervious surfaces, a large industrial 

facility in the Page Ave/I-270 industrial hub, and the St. Louis University (SLU) and Harris-

Stowe State University sports fields and quads (figure 18).  Vegetative growth increased over the 

vestigial concrete roads of the tract of land that formerly hosted the notorious Pruitt-Igoe 

Housing Projects.  These massive complexes were demolished in 1972, just 18 years after their 

development.  Even the mayor’s office found the buildings ―reminiscent of the worst nineteenth-

century caricature of an insane asylum‖ (Gordon 2008 p.12).    
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Finally, 34.3% of the change from urban to non-urban was because of decrease in 

population density below the urban threshold.  Kinloch, a historically all-black community with 

a population from 1950 to 1980 hovering around 6,000, is an example of this category.  Between 

1990 and 2000 Kinloch decreased in population by 83%, falling from 2,702 to 449.  A large 

proportion of its city limits fell below the urban threshold for population density (figure 19).  

Kinloch was originally a ―free black‖ enclave or suburban outpost for African-Americans in the 

1950s, during initial periods of white flight in the US, when, because of racial restrictions 

embedded in private and public realty and local and federal government policies which 

subsidized that market, African-Americans were almost exclusively limited to settling in the 

undesirable downtown area, a few northside tracts, industrial suburbs across the river in Illinois, 

and Kinloch.  From its incorporation in 1948, Kinloch was considered an impoverished 

community.  The city disincorporated a year after incorporation because of a meager tax base but 

reincorporated shortly thereafter.  In 1955-56, its assessed property value was just $2,200 per 

student, compared to $37,000 in the affluent suburb of Clayton.  In 1970, it claimed the highest 

concentration of public housing amongst suburban St. Louis communities (Gordon 2008).  Much 

of Kinloch’s drastic depopulation between 1990 and 2000 was because property in the 

municipality was bought out by the City of St. Louis for airport expansion.  In fact, cities on each 

end of Lambert’s two main, parallel runways experienced some of the highest levels of attrition 

in municipal population in the metro area.  The City of Berkeley, also on the east end of 

Lambert, dropped by 19%, and Bridgeton, on the west end, dropped by 13%. 
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Figure 18. Example areas converted to non-urban by land-cover 

 
Figure 19.  Areas near Lambert Airport falling below urban population density 

1990 – 2000 
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A significant but unavoidable technical issue impacting the urban to non-urban results 

was caused by the fact that census blocks do not remain constant from census to census.  

Dividing up former blocks, for instance, in such a way that newly residential areas of a block 

were sectioned off into a new block, creates a scenario where the undeveloped portion has a 

population higher in the former census than the latter.  This is illustrated in Figure 20.  The block 

in orange, at least by land-cover, experienced no change over the decade (no residential 

development of any kind), however because the blocks were split and the orange section was 

isolated out, it appears as if population fled the area, while in fact few if any persons were there 

to begin with. 

 

 
Figure 20. Division of blocks between decennial censuses causing misleading results 
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4.2 Density Change in and near the City 

Referring back to the density change raster map (figure 9), there were areas that 

decreased in population at various increments, without falling below the urban threshold.  Like 

the decades before, a significant drop in population afflicted St. Louis city in the 1990s: from 

396,685 to 348,189.  In fact, since its peak just over 850,000 in 1950, the city dropped an 

average 10,000 persons per year in the latter half of the 20
th

 century, at an accelerating rate up 

until 1980: population 750,000 in 1960, 622,000 in 1970, 453,000 in 1980, 397,000 in 1990, and 

348,000 in 2000.  The northern half in particular has experienced mass exodus and neglect.  In 

1956, a visiting French businessman noted that the view from Monsanto’s downtown 

headquarters ―look[ed] like a European city bombed in the war‖ (Gordon 2008 p.11).  By 1978, 

St. Louis had the highest vacancy rate (just under 10 percent) of all central cities.  When the city 

challenged the results of the 1980 census, officials responded by rubbing it in:  

“If they don’t wake up and acknowledge the exodus, they’re going to lose it all.  They 

ought to get out of their offices and drive through north St. Louis.  A lot of it looks like a 

ghost town.  When we come back to count in 1990, it may not even be a city.  It may be a 

village.”  (Gordon 2008 p.23) 

Those areas in north St. Louis, the largest swarm of red and orange in figure 21, continued the 

trend of economic suffering they have endured since the end of World War I.  Similar decline 

existed across the river in East St. Louis, which in the 1920s was a thriving industrial area.  In 

2001, all of East St. Louis was partitioned into seven Tax Increment Financing (TIF) zones, 

designed to fund redevelopment with future tax revenues, and blanketed with a medley of state 

and federal enterprise zones for the same purpose.  The largest cluster of growth, mild at best, 

was in central south city, west of ―hotspots‖ off South Grand Avenue.  The only areas near the 
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city of appreciable population growth is Washington University’s (WashU) Danforth (main) 

campus property, due to the building of new housing (mostly for students), and residential areas 

in University City near the popular Delmar Boulevard strip.  The latter’s growth is probably due 

to both increased university enrollment and proximity to the major office center of Clayton, the 

de facto central business district of the metro (Gordon 2008 p.20).  Interestingly, Washington 

University in St. Louis’ main campus is an unincorporated island, surrounded by St. Louis to the 

east, University City to the north and west, and Clayton to the south.      

 

 
Figure 21. Population density change in and near St. Louis city 1990 – 2000 

 

4.3 Methodology Validation 

The urban population density raster maps can be overlaid with the urban land-cover 

classification data to visualize disparities in spatial distribution between urban population and 
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urban land-cover, and vice versa (see figures 22 - 25).  These raster maps show spatially what 

this study attempted to prove: if either urban population data or urban land-cover (impervious 

surface) is used alone to map an urban area, the results will delineate only a subset of the urban 

area.  In these raster maps, wherever one data source peeks through the one overlaying it, it is 

shown that the overlaying data source produces incomplete results.  These maps are an 

illustration of the statistical ―Methodology validation table‖ (table 2).  

 

 

Figure 22. Urban population density overlaying urban land-cover 1990 
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Figure 23. Urban land-cover overlaying urban population density 1990 

 

 
Figure 24. Urban population density overlaying urban land-cover 2000 
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To determine how much urban area is excluded using only remotely-sensed data or only 

population data, the square mileage of each were totaled and divided over the square mileage of 

the combined urban area to arrive at percentages showing the comprehensiveness of each data 

source by itself.  This is shown in table 3.  For both years, using only one data source detects 

only 71 to 73% of the urban area, relative to use of both sources.  This stresses the necessity of 

using population totals and LULC classifications together. 

 

 

 

 

Figure 25. Urban land-cover overlaying urban population density 2000 
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Table 3. Methodology validation table – percentages of urban area covered by only one data 

source 

 

DATASET 1990 sq mileage 2000 sq mileage

urban land-cover 554.31 629.33

urban population 568.67 625.17

urban combined 776.56 858.54

urban land-cover ONLY 71.4% 73.3%

urban population ONLY 73.2% 72.8%

PERCENTAGES

 

 

4.4 Accuracy Assessment 

The accuracy of the final output of this study can only be measured to an extent, due to 

the limitations inherent in checking the output of dasymetric mapping.  This is because 

dasymetric mapping relies on assumptions such as RDensity rather than verified data to produce 

results.  Classification accuracies were determined using an error matrix, while dasymetric 

accuracies were measured against how the dasymetric results spatially coincided with the 

original census block population data.   

TM and ETM+ imagery classification accuracies were assessed using an error matrix, as 

shown in tables 4 and 5 for 1990 and 2000, respectively.  DOQs from the USGS were used as 

ground truth data.  Due to the large analysis extent, only four DOQs were used for the 1990 

classification accuracy assessment (figure 26), and six DOQs were used for the 2000 assessment 

(figure 27).  Each DOQ measured roughly 7,700 meters from its northern to its southern 

extremity.  A random number generator was used to select east-west lines of pixels in the 

classified raster that intersected with the  
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Table 4. Classification matrix for 1989 TM imagery 

urban vegetation soil water TOTAL

urban 349 26 12 0 387 90.2%

vegetation 39 230 9 0 278 82.7%

soil 6 6 244 0 256 95.3%

water 2 2 0 53 57 93.0%

TOTAL 396 264 265 53 978

Producer's Accuracy 88.1% 87.1% 92.1% 100.0% 89.6%

kappa 84.9%

User's Accuracy

 

 

Table 5. Classification matrix for 2000 ETM+ imagery 

urban vegetation soil water TOTAL

urban 452 28 0 0 480 94.2%

vegetation 55 353 3 0 411 85.9%

soil 8 4 157 0 169 92.9%

water 16 2 9 111 138 80.4%

TOTAL 531 387 169 111 1198

Producer's Accuracy 85.1% 91.2% 92.9% 100.0% 89.6%

kappa 84.7%

User's Accuracy

 

 

DOQs.  A random number of one represented the northernmost edge of the DOQ while 7,700 

represented the southernmost.  If, for instance, 2,510 was the random number generated, the 

measure tool was used to determine the line of pixels in the classified image corresponding to 

2,510 meters from the northern extremity of the DOQ.  That line of pixels was then evaluated for 

classification accuracy against the same area on the DOQ.  For each DOQ, one line of pixels in 

the classified image was evaluated.  Overall accuracies for the two classifications were identical 

at 89.6%, while the kappa coefficient for the 1989 image was 84.9% and that for 2000 was 

84.7%.   

The accuracies for the dasymetric population mapping were measured against the census 

block data used to achieve the dasymetric results—how the results coincided with it or did not.  
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Urban areas according to the raw census block data were compared with those according to the 

dasymetric results.  This was done as follows:  

1) The dasymetric population raster was reclassified to urban and non-urban. 

2) All urban blocks from the raw census data were exported. 

3) The reclassified dasymetric raster was converted to ungeneralized vector. 

4) The two datasets were unioned. 

5) Fields were added in both datasets and the area of the records calculated. 

6) Finally, those areas of non-intersection according to the separate FID fields produced 

during the union were queried (if an area showed no data, it was assigned a value of -

1 during the union). 

 

Results showed that for the 1990 data, 11.9% of areas urban according to the total unioned urban 

area of both data sources were areas the dasymetric results determined to  

 
 

Figure 26. Locations of DOQs for 1990 classification accuracy assessment 
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be non-urban but the census determined to be urban.  Meanwhile 5.6% was determined to be 

urban by the dasymetric results only.  For 2000, 10.3% was urban according to the raw census 

data only and 5.7% was urban according to the dasymetric results only.  These data are 

summarized in table 6.   

What this assessment means is that, when compared with the census’ choropleth mapping 

of urban population by block, the dasymetric results can be no more inaccurate than 82.5% and 

84.0%.  This is because the dasymetric method redistributes the census population only within 

the area covered by the block.  Thus, the sum of the pixel population values for a block equals 

the original census block population, for all the dasymetric results.  This is the so-called volume-

preserving or pycnophylactic property in dasymetric mapping that was verified for this study’s 

results above.  The dasymetric results are actually the same census population data for the block 

area just distributed  

 

 
 

Figure 27. Locations of DOQs for 2000 classification accuracy assessment 
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Table 6. Accuracy assessment for dasymetric urban population mapping 

ACCURACY

sq mileage percentage sq mileage percentage sq mileage percentage

1990 72.29 11.9% 33.83 5.6% 607.13 17.5% 82.5%

2000 67.77 10.3% 37.06 5.7% 655.88 16.0% 84.0%

ONLY census urban ONLY dasymetric urban total census urban area

 

 

unevenly throughout the block area rather than evenly.  They can be considered more accurate 

than the original block data when compared with the block data.  However, if compared to other 

dasymetric results at the 30 x 30-meter pixel level, they may be less accurate or more accurate, 

because in that case datasets within the block could be compared and evaluated against each 

other.   
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CHAPTER 5: CONCLUSION 

 

The purpose of this study was to develop a dasymetric technique for mapping urban areas 

and their change over time utilizing two fundamental criteria for an urban environment: urban 

population density and the presence of impervious surface.  It was shown that when these data 

sources are used together, results are more comprehensive than when either data source is used 

alone.  Either of the data sources used alone would yield only roughly 70% of the urban area as 

delineated when both sources are combined.  What this means is that the corpus of research on 

urban area delineation and growth through the use of optical, aerial remote sensing systems 

could very well be only 70% accurate.  This could be the case in spite of accuracy assessments 

yielding strong results, because of the failure to understand the added dimension that data such as 

population data bring to such studies.  In other words, remote sensing classifications do not 

interpret large-lot, vegetated subdivisions found on urban-rural fringes as urban, but as 

vegetation more or less identical to rural areas such as open pastures or forestland.  Nor do 

classifications see as urban wealthier suburbs only a few miles from the central city limits (such 

as Ladue, MO) that have very thick canopies blocking out streets and homes.  Admittedly, 

satellite imagery with higher spatial resolution may yield more comprehensive results than TM 

and ETM+ imagery, but they are likely still to be significantly deficient because of the mixed 

pixel problem, vegetative canopies, and phenomena related to the presence and movement of 

urban population not readily detectable to optical satellites.  
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5.1 Analysis Problems and Limitations 

It is important to explain an error that was committed in the calculation of RDensity in 

the early trial of this study.   In the procedure detailed on pages 28-29, step five had been 

mistakenly omitted.  The error had resulted in significantly different values for RDensity, which 

slightly affected the overall results in the drafts.  Omitting step five did not factor population into 

the calculations and the resulting RDensity values were only a measure of the proportions of 

land-cover in the study area.  Multiplying the percentage of land-cover share for each block by 

population of a block weighted the RDensity results according to population, and the RDensity 

values were then appropriately a percentage of population for a given land-cover category in the 

area.   

The error had produced the following RDensity assumptions for 1990: 33% urban, 49% 

vegetation, 17% soil, and 1% water/wetland.  For 2000, it produced: 32% urban, 59% vegetation, 

8% soil, and 1% water/wetland.  The high vegetation and lower urban percentages seemed 

counterintuitive for an area so heavily urbanized.  This was an indication that the calculation was 

incorrect.  The error was corrected in the final trial of the study, when calculations were repeated 

to provide greater elaboration on the process of determining RDensity.    

Though this technique accomplished its aim for this study, it is surely not without 

limitations, and future research could hone it significantly.  A major problem encountered in this 

project was the urban/non-urban status of developed land that is physically very similar to rural 

land.  For instance, many would believe golf courses and urban parks such as Forest Park or 

Tower Grove Park in St. Louis city to be urban, in spite of their abundance of vegetative growth.  

Their purpose after all is urban, and they experience quite a bit of ―people traffic‖ on a regular 

basis (though according to this conception, golf courses might be considered rural during 
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winter).  Yet neither classifications nor population data interprets these areas as urban.  What 

would be necessary would be data on movements of people through these areas, rather than static 

data on where they reside.  Manual adjustments based on vector data of these areas might be the 

most systematic solution to these issues.     

It should of course also be recognized that in many parts of the world, current and 

accurate population data are lacking.  This is why satellite imagery is often the only source for 

mapping of urban areas and measurement of their change over time.  As one recalls the different 

landscapes throughout different cultures and continents, if anything, this makes the need for on-

the-ground data more necessary, or else attempts at measurement fall far short of rigorous.  An 

African village without sustained electricity or a South American city with homes and shelters 

made of hardened soil would not even register in many classification schemes.  Even dirt roads 

in developed nations such as China or Mexico would cause significant errors.  This study’s 

technique was conceived as useful in the US and other developed countries where infrastructure 

is highly technological and extensive and population data are available.  

 

5.2 Future Development 

Future research could attempt to solve the aforementioned problem of urban parks, golf 

courses, and other developed land commonly determined to be rural by remote sensing methods.  

An automated or systematic technique for improving this would be particularly helpful.  Another 

focus could be different methods and/or classification algorithms for higher classification 

accuracy.  While 90% is a fairly accurate classification score, much manual work can be required 

for shadowed areas caused by large buildings or large agricultural fields that reflect similarly to 

areas of impervious surface.  Finally, development of appropriate ways to integrate remotely-



61 
 

sensed data with on-the-ground data in varying cultures, climates, and landscapes would be 

useful for this technique’s use in other countries.  Lack of available data might require creative 

sampling techniques, or datasets less straightforward or ―manipulable‖ than population counts 

but accomplishing the same end (such as the presence of working water lines, known addresses, 

or consumer counts).  The key in such a challenging endeavor would of course be the same as 

that used in this study: to make the most of the data available to us, to bring it together 

cohesively and produce results that have the multi-dimensionality of the phenomena being 

studied.  
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