
3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS)-2016

Designing an emergency management system using software
design patterns

Ajay Bandi* and Mark Corson†

*Department of Mathematics, Computer Science, and Information Systems
 †Department of Natural Sciences

*†Northwest Missouri State University, Maryville, USA
*ajay@nwmissouri.edu, †mcorson@nwmissouri.edu

Keywords: design patterns, composite pattern, façade
pattern, adapter pattern, iterator pattern

Abstract
Design patterns in software projects are very useful for
enhancing the functionality of the software. However, many
software developers implement code without using design
patterns. This often causes problems during the software
maintenance phase. This paper presents the hypothetical views
and lessons learned in applying design patterns if we knew about
design patterns during the design phase of the software
development lifecycle (SDLC). We report our ideas for using
design patterns based on real experience in developing software
to verify specific properties of managing disasters. We explain
the design patterns and how they fit in our project. The lessons
learned recommendations, and conclusions of this paper help to
motivate and educate future software developers and
practitioners about the design patterns in object-oriented
programming.

1 Introduction
The different phases of the SDLC, such as design,
implementation, testing, and maintenance, take significant
amounts of time to accomplish by software engineers. To
reduce the time spent in these phases, software engineering
practitioners use various techniques such as design patterns
and automated testing while implementing code [4]. During
the design phase, using design patterns can save considerable
amounts of time. The main motivation of this paper is to
contrast the difficulties in developing a real software example
with and without the use of design patterns. This paper
presents how to use design patterns effectively based on our
hypothetical experience. This also includes the hypothetical
lessons learned and recommendations for software
developers. We also describe our experience using design
patterns in an Emergency Disaster Management System
(EDMS) to manage and rescue people during various
emergency situations.

The use of design patterns in software projects often makes it
easier to understand and modify the code, as well as enhance
other functionalities based on the requirements of the project.

This paper explains how the facade, composite, iterator, and
adapter design patterns are a good fit for EDMS.

2 Overview of EDMS
An emergency disaster management system is the creation of
plans through which communities reduce vulnerability to
hazards and cope with disasters. Disaster management does
not avert or eliminate the threats; instead, it focuses on
creating plans to decrease the impact of disasters. Failure to
create a plan could lead to damage to assets, human mortality,
and lost revenue. These plans include mitigation, prevention,
preparedness, rescue, and recovery.

The main purpose of the EDMS is to ensure public safety at
the time of a disaster by adapting to disaster management
plans. This system has an administrator who is responsible for
the implementation of the management plans. An
administrator responds at the time of disaster and informs the
rescue teams regarding the disaster and allocates certain
locations to the teams to take actions to implement the rescue
and recovery operations. Rescue teams are the trained
personnel who voluntarily take part in the training sessions
conducted by the rescue experts. For example, sessions on
tornado rescue, earthquake rescue, flood rescue, emergency
medical help, intruder rescue etc.

Initially, the administrator has to register a disaster into the
system. The administrator responsibilities include form rescue
teams, add the people into the rescue team, delete people from
the teams, move people from a team to another team, assign a
team leader, send alert messages, view the location of the
rescue teams, filter the information sent by the teams based
on time, severity and type of hazard, and accept and reject the
requests from the team members.

The administrator will be using the web application and
mobile application to monitor the rescue operations and
prioritize the resources based on the information from the
rescue teams. Team members need to register to the system
and log in to send information back to the administrator. This
information includes the location of the teams, the severity of
the damage occurred, different types of hazards that are prone
to the rescue location, number of remains at the location and
also the resources that are required to accommodate people

599

3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS)-2016

and move them to relocate to the safe zones. The
administrator also maintains the history of the disasters
occurred in the past.
As rescue teams are not stationary and move from place to
place, the mobile application will be used to communicate
back to the administrator. There is a need to have effective
communication between the rescue commander and the team
members while rescuing the victims. Sometimes it results in
an instant need of the trained people for rescuing due to high
severity. The team members should create a clear view for the
rescue commander from the rescue location. The rescue
commander should able to have full control over the team
members so that rescue operations will hold under certain
rules and regulations.

This application was developed in our graduate directed

project course, a capstone project, of our graduate program
(MS-ACS). Two teams, each team of size 10 implemented
EDMS in Android and iOS applications without software
design patterns. This causes maintenance [6, 7, 8] and
performance issues such as harder to enhance the
functionality of the system, repair defects, and modifying
source code. This is a challenging task for the programmer
analysts. The solution for this problem by applying software
design patterns while designing the system.

3 Why considering design patterns in EDMS
The logical structure of EDMS consists of the input data read
by the data input reader and sends a message to the Command
Post. The EDMS software is difficult to modify due to its
complexity, which also inhibits efficient testing and
debugging. Adding functionality for other objects becomes
more complex because of this bad design. Based on
knowledge from the software design patterns course, we will
use some of the design patterns in the EDMS (both Android
and iOS projects).

3 Applying design patterns
This section describes all design patterns suitable for use in
the EDMS. The main structure of the EDMS uses the facade
pattern. Furthermore, the composite pattern is also
implemented for representing different data objects. The
iterator pattern is used for the collection of data items, and an
adapter pattern is used when interfaces do not match each
other. For every pattern used, we evaluate the following
criteria:

• Lessons learned after applying the pattern.

• Modularity, reusability and understandability of code.

– Modularity: Subdividing the system into further
simpler subsystems.

– Reusability: Using a particular working module in
different subsystems.

– Understandability: Readability & comprehending
the code.

Facade
InputData

EDMS

Fig 1. Collaboration diagram for façade pattern

3.1 Façade pattern
Application of pattern: We used the facade pattern

in between the data input (subsystem) and the emergency
disaster management system (Client).

Explanation: The logical structure of the EDMS

represented by the data, is read and parsed using the parser to
extract all the information about various disasters. The
extracted data is then used for the verification. Here the
facade pattern is used in between the data input and the
EDMS. In Figure 1, the subsystem is the data input and
cannot be modified, and the client is the EDMS, which can be
modified using the parser data. Figure 1 shows the
collaboration diagram for the facade pattern. Data input is a
subsystem, which cannot be modified, and the EDMS is the
client.

Evaluation: After using the facade pattern, the

EDMS system can be easily developed in different modules
reducing the coupling between the client and subsystems. It
makes the application more modular because all of the code
not using the facade pattern has been in the input data
subsystem, which causes more confusion for the programmer.
Translating the required data objects from input data to the
EDMS becomes easy using the facade pattern.
Understandability of the code is much better after
documenting the usage of the facade pattern [2]. There is no
reusability of code with the facade pattern. However, we can
design other interfaces based on the requirements of clients
using these patterns.

3.2 Composite pattern
Application of pattern: Composite pattern is used

to represent the data objects of the EDMS.

Explanation: In general the composite pattern is

used for hierarchical data [3]. The Command Post manages
list of rescue teams, team members, and different types of
rescue teams (earthquake rescue team, flood rescue team,
power outrage rescue team etc.) The Command Post
supervised a list of rescue teams and each rescue team
consists of an array of team members. The composite pattern
is the best pattern to use for the EDMS to represent the data

600

3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS)-2016

objects because it manages the children at a run time. Figure 2
shows the class diagram for the composite pattern. Here
compartment and side are two composite objects and the leaf
is node object.

Evaluation: The composite pattern reduces the

complexity of hierarchical or tree structure data into the
simple structure. This pattern makes the EDMS more
modular. The code is implemented as different modules for
each of the data objects. Testing becomes easier after
implementing the pattern. Readability of source code is
simpler when we use the composite pattern with
documentation in the code [2]. Reusability of modules is not
done frequently in our project.

CommandPost

RescueTeam

TeamMember

EarthquakeRescue

FloodRescue

Fig. 2. Class diagram for composite pattern

3.3 Iterator pattern
Application of pattern: A simple way to access the

elements in the disasters list.

Explanation: In our project, we have different
collections of objects. They are disasters, rescue teams, and
rescue team members. These collections can be handled by
several data structures such as linked lists, array lists, or hash
tables. These structures are part of the collections library in
Java and .NET. In our project, the disasters can be stored by
using LinkedList or an ArrayList. The main difference
between them is in the underlying storage format and
efficiency of accessing elements from these structures.

However, the program should behave the same whether we
are using a LinkedList or an ArrayList. Therefore, an iterator
pattern is useful. An Iterator is an interface that traverses
through the elements of a list. If we use the iterator pattern to
traverse disasters, then the programmer can use either a linked
list or an array list to handle these collections of data items.
Figure 3 shows the sequence diagram for the iterator pattern.
The object shown in Figure 3 is the list of disasters. Using the
hasNext() and next() methods in the iterator pattern we
can traverse the list. Thus, we are not depending on the size of
the list. So the programmer has the flexibility of using array
list or link list or hash tables.

Disasters Iterator ArrayList

Iterator()
construct

Iterator object reference
hasNext()

examinedata
True/False

next()
getDistanceID()

dishID

loop

Fig. 3. Sequence diagram for Iterator pattern

Evaluation: Mainly the iterator pattern is used for
decoupling usage and actual implementations. This pattern
makes the code more flexible. By using the iterator pattern,
there is no advantage for modularity of code. Documenting
the pattern usage in source code improves the readability [2].
The iterator pattern is reusable for different types of objects.

3.4 Adapter pattern
Application of pattern: The adapter pattern is used

when two interfaces in the EDMS do not match.

601

3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS)-2016

Explanation: There are several different places we used the
adapter pattern in our EDMS. In the adapter pattern, both the
client and the adaptee cannot be modified. The adding or
changing of the requirements results in enhancing the
functionality of the project. For this, modifying of the existing
source code may lead to major rework of the existing code.
To avoid this, we added some methods so that the code works
for both the old and new requirements. This is the handiest
design pattern used in our project. Figure 4 shows the
collaboration diagram for the composite pattern. In our
project, both the client and adaptees are methods.

Client Adapter Adaptee

Fig. 4. Collaboration diagram for adapter pattern

Evaluation: The adapter pattern communicates

between the interfaces without any modifications. By using
the adapter pattern we can simplify the complexity of the code
by designing adapter interfaces separately. Modularity of the
code is improved after applying the adapter pattern. There can
be no reusability of code when an adapter pattern is used.
Understanding of source code is simpler when we use an
adapter pattern with proper documentation [2].

4 Lessons learned and recommendations
Lessons Learned: This section explains the different lessons
learned in applying design patterns in the EDMS. This section
also highlights the top recommendations to software
engineering practitioners for using these design patterns.

• Communication between the team members is very easy
when we use design patterns in the software provided
that team members have knowledge of the patterns.

• The complexity of software can be managed easily even
though requirements are changed.

• Unit testing at the class level becomes significantly less
expensive when we apply design patterns.

• By using design patterns modularity, reusability, and
understandability of code increases. Thus, maintenance
of software is relatively easy.

• The time taken for the software design process is
reduced or automated.

Recommendations: The following are the recommendations
to software engineering practitioners using design patterns in
projects.

• Apply appropriate design patterns wherever applicable in
the software projects.

• If any design patterns are used in the software, then
document the names of these patterns in the comments
of the source code.

• Using unsuitable design patterns may complicate the
software.

• Students who are seeking a programmer analyst,
business analyst or software architect jobs should take a
course on design patterns!

Acknowledgements

We would like to thank the graduate directed project teams
who worked on the implementation of emergency disaster
management systems both in Android or iOS applications
without using software design patterns.

5. Future work

In the future, we plan to design user interfaces of EDMS
for Android and iOS applications and conduct usability
testing [9] on the interfaces to find out the problems of
using EDMS in real world situations.

References
[1] K. Beck, J. O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F.

Paulisch, and J. Vlissides, “Industrial Experience with Design
Patterns,” Proceedings: 18th International Conference on Software
Engineering. IEEE Press, 1996, pp. 103–114.

[2] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy,
“Two Controlled Experiments Assessing the Usefulness of Design
Pattern Documentation in Program Maintenance,” IEEE Transactions
on Software Engineering, vol. 28, no. 6, June 2002, pp. 595–606.

[3] T. D. Thu and H. T. B. Tran, “A Composite Design Pattern for Object
Frameworks,” Proceedings: 31st Annual International Computer
Software and Applications Conference, Beijing, 2007, IEEE Computer
Society.

[4] P. Wendorff, “Assessment of Design Patterns during Software
Reengineering: Lessons Learned from a Large Commercial Project,”
Proceedings: 5th European Conference on Software Maintenance and
Reengineering. IEEE Press, 2001, pp. 77– 84.

[5] B. Wydaeghe, K. Verschaeve, B. Michiels, B. V. Damme, E. Arckens,
and V. Jonckers, “Building an OMT-Editor Using Design Patterns: An
Experience Report,” Proceedings: Technology of Object-Oriented
Languages TOOLS 26, California, 1998, IEEE Computer Society.

[6] A. Bandi, E. B. Allen, and B. J. Williams, "Assessing code decay: A
data-driven approach," in Proceedings of ISCA 24th International
Conference on Software Engineering and Data Engineering. San
Diego, California, USA: ISCA, Oct. 2015.

[7] A. Bandi, Assessing Code Decay by Detecting Software Architecture
Violations, doctoral dissertation, Mississippi State University, Dec.
2015,

602

3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS)-2016

[8] A. Bandi, B. J. Williams, and E. B. Allen, “Empirical evidence of code
decay: A systematic mapping study,” in Proceedings of 20thWorking
Conference of Reverse Engineering. Koblenz, Germany: IEEE, Oct.
2013, pp. 95—102.

[9] A. Bandi and P. Heeler “Usability testing: A software engineering
perspective,” in Proceedings of 2013 International Conference on
Human-Computer Interaction (ICHCI). Chennai, India: IEEE, Aug.
2013, pp. 1—8.

603

