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Accuracy Assessment of Supervised and Unsupervised  

Classification using Landsat Imagery of Little Rock, Arkansas 

 

Abstract 

 

Remotely sensed data is an important component of land use/land cover (LULC) 

studies.  This research utilized the vegetation-impervious surface-soil (V-I-S) model.  

Using Enhanced Thematic Mapper Plus (ETM+) imagery, this research compared the 

accuracy of supervised and unsupervised classification by analyzing three study areas in 

and near Little Rock, Arkansas.  The first study area was a homogeneous region 

comprised primarily of water features.  The second study area was a region of an 

intermediate mix of land cover classes.  The third study area was a region of 

heterogeneous land cover composition between the four land cover classes of the V-I-S 

model.  Upon the completion of supervised and unsupervised classification, 200 points 

for each area were randomly generated using a stratified random sampling approach.  The 

land cover data associated with these points were then compared to ground truth data 

derived from higher-resolution imagery from the National Agriculture Imagery Program 

(NAIP).  Based on error matrices, the homogeneous and intermediate study areas featured 

higher accuracy values for unsupervised classification over supervised classification.  For 

the heterogeneous study area, supervised classification was more accurate than 

unsupervised classification by one percent.   
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CHAPTER 1: INTRODUCTION 

When identifying land use or land cover for a given area of interest, two common 

approaches to classify each pixel in an image are supervised classification and 

unsupervised classification.  In supervised classification, an analyst uses previously 

acquired knowledge of an area, or a priori knowledge, to locate specific areas, or training 

sites, which represent homogeneous samples of known land use and/or land cover types.  

Based on statistics of these training sites, each pixel in an image is then assigned to a 

user-defined land use type (residential, industrial, agriculture, etc.) or land cover type 

(forest, grassland, paved surface, etc.).  Unsupervised classification is useful for scenes in 

which land cover is not well-known or undefined.  Computer algorithms group similar 

pixels into various spectral classes which the analyst must then identify and combine into 

information classes (Jensen 2005, Thomson et al. 1998).  Both approaches of 

classification have strengths and weaknesses associated with the physical execution of 

the classification process and with the final result of the analysis.  It is important to note, 

however, that no particular classification method is inherently superior to any others 

(Jensen 2005).   

This research did not intend to refute such a claim.  Instead, the intent of this 

research was to determine situations where one classification method is predisposed to be 

more accurate than the other based on contributing factors such as training site selection, 

spectral reflectance properties, and land cover composition.  Because remote sensing is a 

powerful tool for studying geospatial phenomena, land use and land cover studies make 

frequent use of remotely sensed imagery.  There are a wide variety of applications for 

land use and land cover studies to include natural disaster mapping (Borghuis et al. 2007), 
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forest management (Mukherjee and Mukherjee 2009), and urban ecosystem analysis 

(Ridd 1995, Hung and Ridd 2002, Madhavan et al. 2001, Ward et al. 2000).  Possessing 

accurately classified imagery is paramount to these studies and can affect decisions 

regarding land development and governmental policy.  This is especially true if the 

analysis is of a time-critical or lifesaving nature.   

Before researchers can perform any type of analysis, they must first perform some 

sort of classification to determine the exact nature of each pixel in a remotely sensed 

image.  Classification error occurs when an image pixel that belongs to one category (as 

determined by ground truth data) is incorrectly assigned to another category.  

Classification error does not occur randomly or sporadically.  Instead, such errors have 

several distinct characteristics.  First, errors display a systematic and ordered arrangement 

and are likely associated with certain information classes.  Second, incorrectly classified 

pixels do not occur in isolation.  Instead, these erroneously assigned pixels occur in 

clusters of variable shape and size.  Finally, classification errors may follow a distinct 

spatial pattern.  For example, errors may occur at the edges of some classified images or 

in the interiors of certain land parcels (Campbell 2007).  If there are measurable and 

predictable imagery characteristics that would increase the likelihood of one 

classification method possessing higher accuracy than others, researchers could save a 

great amount of time and manpower by utilizing this knowledge before conducting any 

analysis. This research was meant to provide suggestions for determining a more 

effective and efficient classification method for different types of land use/land cover 

studies in order to positively impact any future analysis.  There is extensive literature that 

supports the individual use of both supervised and unsupervised classification approaches 
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in land use and land cover studies.  Additionally, there are many studies where both 

classification approaches are compared to determine which approach is more accurate.  

Few studies found unsupervised classification to be more accurate than supervised 

classification (Borghuis et al. 2007), while a greater number of studies found the 

converse to be true (Alrababah and Alhamad 2006, Bahadur 2009, Mukherjee and 

Mukherjee 2009, Trisurat et al. 2000).   

 

1.1 Research Objective 

 The objective of this research was to assess and compare the accuracy of 

supervised and unsupervised classification.  This research analyzed study areas with 

homogeneous, intermediate, and heterogeneous land cover compositions.  While previous 

comparative studies have found one classification approach to be more accurate than the 

other, the authors of those studies did not discuss the implications of their findings 

outside of the context of their research project, nor did they offer any advice or guidelines 

for future LULC studies that may use supervised and/or unsupervised classification.  In 

addition to comparing supervised and unsupervised classification, this research aimed to 

provide guidelines that will allow future researchers to determine which of the two 

classification approaches is better suited to their own LULC studies. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Land Use and Land Cover Analyses in Urban Environments 

Urban environments provide for complex and challenging geospatial analysis due 

to the dynamic and interconnected nature of different land use and land cover features.  

Most remote sensing literature, however, focuses more on natural study areas.  After 

explaining that most remote sensing literature contained very little analysis of urban 

environments, Ridd (1995) created a standardized classification scheme for urban 

ecosystems, the vegetation-impervious surface-exposed soil (V-I-S) model, as a basis for 

standardizing urban area study using remotely sensed data.  Ridd developed a pilot 

project in Salt Lake City, Utah to test the viability of the V-I-S model.  Using a sampling 

frame of a 5.83 hectare square (roughly equivalent to a central city block), a total of 770 

points were sampled using high-quality 1:30,000 scale color infrared photographs.  Each 

of these points was classified as vegetation, impervious surface, or soil.  Ridd (1995) 

found a high concentration of impervious surface points in the central business district 

with a decreasing density of impervious surface as distance from the central business 

district increased.  The opposite trend was true with vegetation as there were high 

concentrations near the edge of the city and decreasing concentrations toward the center.  

While there were not a large number of soil points in the study area, there was an 

interesting correlation between soil points and locations of known construction and/or 

conversion (i.e. a change from one LULC type to another). While land use is of interest 

for the V-I-S model, land cover is the true objective for this classification scheme.  Water 

features were treated as special features that were processed separately from the V-I-S 
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model.  Water features are important for land cover analysis because water absorbs most 

visible light and infrared energy, thus providing excellent visual and spectral contrast 

against other land cover types.  While Ridd (1995) did not discuss the use of supervised 

classification, unsupervised classification, or any other automated classification method, 

the V-I-S model he proposed provides an excellent framework for any analyst who 

wishes to conduct a land cover classification study.   

Hung and Ridd (2002) expanded on the earlier work of Ridd (1995) by adapting 

the V-I-S model to subpixel analysis, a technique necessary to address the issue of mixed 

pixels inherent in a complicated urban environment.  While subpixel analysis was beyond 

the scope of the research in this thesis, the ability to simplify a heterogeneous urban 

landscape into its V-I-S components is very much relevant.  Again, water was treated as a 

separate and special land cover class.  Hung and Ridd (2002) chose to analyze a 

heterogeneous 10-kilometer by 6-kilometer area of Salt Lake City, Utah.  The imagery 

used in this study included a 5-kilometer Thematic Mapper multispectral image taken in 

1990, a 1:8000 panchromatic aerial photograph taken in 1990, and a 1:4600 color 

infrared aerial photograph taken in 1985.  The higher-resolution aerial photographs 

provided the primary ground truth data during accuracy assessment.  A total of six non-

water land cover classes were used: green grass vegetation, tree/shrub vegetation, bright 

impervious surface, medium impervious surface, dark impervious surface, and soil/dry 

vegetation.  Assuming a pixel was not identified as water, the authors assigned a 

likelihood percentage that matched the land cover of a pixel against its corresponding 

ground truth.  While simplification of land cover types does not handle extreme 
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differences very well, it still allows the study of urban environments in both a qualitative 

and quantitative manner. 

Madhavan et al. (2001) was yet another study that used the V-I-S model to 

analyze changes in an urban environment.  The study area was a 617 square-kilometer 

area in Bangkok, Thailand.  Using two Landsat 5 Thematic Mapper scenes taken in the 

winters of 1988 and 1994, the authors identified a 2 percent decrease in agricultural lands 

and a 14 percent increase in commercial areas.  Madhavan et al. (2001) used 

unsupervised classification to identify seven LULC classes (commercial, high-density 

residential, medium-density residential, low-density residential, vegetation, open land, 

water bodies), and then used supervised classification to assign each pixel to one of the 

LULC classes.  Changes detected using the V-I-S model matched well with changes 

detected by a change-detection map (6.0% versus 5.6%, respectively). 

Another study to use the V-I-S model was Ward et al. (2000).  Ward et al. (2000) 

examined urban growth in southeast Queensland, Australia between 1988 and 1995 with 

an overall accuracy of 83 percent.  The authors used Landsat 5 Thematic Mapper imagery 

for their analysis.  While the authors originally attempted to use supervised classification, 

the inability to delineate LULC classes led them to use an unsupervised classification that 

produced 20 spectral classes.  Four land cover classes were used in this study: forest, 

water, a vegetation class that combined exposed agricultural soil with non-woody 

vegetation areas, and an urban land class that combined exposed soil associated with 

urban land use as well as landscaped residential areas and impervious surfaces.  A total of 

385 sample points were used and each class except water contained over 100 sample 

points.  The overall accuracy of the classification was 88% and the Kappa statistic was 
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83%.  The authors noted that the soil class was the most poorly classified and that it was 

commonly confused with the urban class.  Most of this confusion resulted from the 

inability to distinguish exposed or sparsely vegetated soil from landscaped residential 

areas.  There was also some slight misclassification between the soil and forest classes.  

In most cases, newly-created impervious surfaces were easier to distinguish from exposed 

soil and vegetation because of their much higher brightness values.  Ward et al. (2000) 

also noted that residential areas further away from the city center were more prone to 

misclassification due to their heterogeneous composition of buildings, roads, and wooded 

and non-wooded areas of vegetation. 

There are many studies that have directly compared the accuracy of supervised 

and unsupervised classification.  Borghuis et al. (2007) is unique in that it is one of the 

few studies to find unsupervised classification to be more accurate than supervised 

classification.  Using SPOT-5 imagery of the island of Taiwan, the authors used 

automated and manual classification methods to map the location and intensity of 

landslides.  Though aerial photography was the common data source for mapping 

landslides, Borghuis et al. (2007) chose to use satellite imagery for their analysis for four 

reasons: aerial photography covers relatively small areas, using photographs for manual 

analysis takes large amounts of time and money, aerial photographs inevitably feature 

cloud cover that obscures view of the ground, and the temporal resolution of aerial 

photography is irregular at best.  While conducting unsupervised classification, the 

authors initially used 8 spectral classes, but then increased this number to 32 due to the 

spectral similarities between landslides, bare farm fields, dry riverbeds, and roads.  

Supervised classification used four classes: rock, landslide, forest, and urban areas.  The 



8 
 

authors also manually classified landslide areas for comparison against the automated 

methods.  Boghuis et al. (2007) found the accuracy of supervised classification to range 

between 15.7 to 39.4 percent while the range of accuracy for unsupervised classification 

ranged between 53.3 and 63.1 percent.  

A larger number of studies, however, found supervised classification to be more 

accurate.  Alrababah and Alhamad (2006) compared supervised and unsupervised 

classification methods for the highly heterogeneous landscapes in the northern regions of 

Jordan.  Since the authors found paper LULC maps to be lacking in spatial coverage, 

level of detail, and temporal resolution, they sought to find an effective way to produce 

accurate and timely electronic LULC maps.  Using Landsat Enhanced Thematic Mapper 

imagery, Alrababah and Alhamad (2006) conducted supervised and unsupervised 

classification, both with and without spatial enhancement procedures, using 8 land cover 

classes and 278 sample points.  The land cover classes were water, urban, agricultural 

land, forest land, shrub land, rangeland, olive farms, and bare soil.  Alrababah and 

Alhamad (2006) found that unsupervised classification had an overall accuracy between 

69.1% without spatial enhancement and 73.7% with spatial enhancement.  The overall 

accuracy for supervised classification without and with spatial enhancement was 78.8% 

and 82.7%, respectively. 

Bahadur (2009) compared supervised and unsupervised classification schemes in 

the mountainous regions of Nepal.  Bahadur (2009) used five land use classes in his 

study: forest, scrubland, lowland agriculture, upland agriculture, and vegetables.  Using 

multiple classification schemes, Bahadur (2009) found that the accuracy for unsupervised 

classification ranged from 45 to 68 percent.  An overall accuracy of 82.86% was obtained 
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for supervised classification.  Bahadur (2009) noted that ancillary data such as Digital 

Elevation Model, aspect, and slope decreased the difficulty in differentiating between 

land use classes.   

Mohammed and Rusthum (2008) used pixel-based and object-based approaches 

to analyze urban structures in Vijayawada, India.  The authors derived ground truth data 

for their study from in situ measurements.  Four land cover types were used in this study: 

urban areas, water, vegetation, and rocky areas.  Mohammed and Rusthum (2008) 

achieved 87.67% overall accuracy for unsupervised classification versus 97.5% overall 

accuracy for supervised classification. 

While conducting forest inventory estimation in India, Mukherjee and Mukherjee 

(2009) used a subpixel analysis method called Spectral Mixture Analysis in both 

supervised and unsupervised approaches.  This study featured only three land cover 

classes: dense forest, sparse forest, and open bare soil.  The authors used 30 training sites 

(10 for each land cover class) in their supervised classification and 60 spectral classes (20 

for each land cover class) in their unsupervised classification.   The authors found the 

overall accuracy to be 76.67% for supervised classification and 53.33% for unsupervised 

classification.  The most common misclassifications occurred in areas of sparse forest. 

Trisurat et al. (2000) mapped tropical vegetation in Thailand using both 

classification approaches.  The authors noted two major difficulties in mapping tropical 

forests: the spectral differences between the many species of vegetation and the problems 

that shadows can cause in classification.  The land cover types featured in this study 

included dry evergreen rainforest, tropical rainforest, hill evergreen forest, mixed 

deciduous forest, escarpment vegetation, and grassland.  Using 72 sample points, the 
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authors produced a supervised classification with an overall accuracy of 79.16% and an 

unsupervised classification with an overall accuracy of 65.27%.  Escarpment vegetation 

featured the most misclassification as many of these pixels were classified as denser 

types of vegetation.  Additional confusion occurred between the tropical rainforest and 

hill evergreen forest classes.  Since these two classes occur at different altitudes, the 

authors suggested that adding a digital elevation model could mitigate any confusion. 

Thomson et al. (1998) took a different approach and compared how closely 

supervised and unsupervised classification matched each other in lieu of determining how 

well the classification results matched ground truth data.  After analyzing the eastern 

coast of England, the authors found that both classification approaches had comparable 

results in heterogeneous areas, but also noted that areas of homogeneous vegetation 

produced inconsistent results for unsupervised classification.   

Interestingly, all of the referenced instances of supervised classification used the 

Maximum Likelihood Classification (MLC) algorithm.  The majority of unsupervised 

classification in the studies previously reference used the Iterative Self-Organizing Data 

Analysis Technique (ISODATA) algorithm.  One exception was Mohammed and 

Rusthum (2008) who did not specify which algorithm they used. MLC and ISODATA 

appear to be the most common and accurate algorithms for supervised classification and 

unsupervised classification, respectively.  Thus, these two algorithms formed the basis of 

the supervised and unsupervised classification performed during this research. 

After reviewing the literature concerning supervised and unsupervised 

classification, it became apparent that certain types of land cover are more prone to 

misclassification than others.  Areas of exposed soil can easily be misclassified as roads 
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or riverbeds (Borghuis et al. 2007).  Vegetation classes can be a source of spectral 

confusion as some types of shorter, low-density vegetation, such as scrublands, may be 

misattributed to taller, higher-density vegetation features, such as forests (Bahadur 2009).  

For both supervised and unsupervised classification processes, there are straightforward 

methods of mitigating incorrect classifications.  When using supervised classification, 

judicious training site selection is paramount.  Using sites of a known and homogeneous 

land composition can decrease the number of incorrectly classified pixels (Bahadur 2009, 

Mukherjee and Mukherjee 2009).   For unsupervised classification, error propagation is 

reduced by increasing the number of spectral classes (Mukherjee and Mukherjee 2009).  

Though the V-I-S model may appear to decrease the chance of error by using a lower 

number of information classes, the chances of pixel misclassification may actually 

increase in areas where multiple land cover types transition into each other, where there 

is a large number of instances of mixed pixels (Mukherjee and Mukherjee 2009) or in 

cases where a feature may be spectrally similar to those of a different land cover type, 

such as the confused classes identified by Hung and Wu (2005).   

 

2.2 Accuracy Assessment 

The increased usage of remote sensing data and techniques has made geospatial 

analysis faster and more powerful, but the increased complexity also creates increased 

possibilities for error.  In the past, accuracy assessment was not a priority in image 

classification studies.  Because of the increased chances for error presented by digital 

imagery, however, accuracy assessment has become more important than ever 

(Congalton 1991).  A common tool to assess accuracy is the error matrix.  Error matrices 
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compare pixels or polygons in a classified image against ground reference data (Jensen 

2005).  These matrices can measure accuracy in several ways.  The overall accuracy of 

the classified image compares how each of the pixels is classified versus the actual land 

cover conditions obtained from their corresponding ground truth data.  Producer’s 

accuracy measures errors of omission, which is a measure of how well real-world land 

cover types can be classified.  User’s accuracy measures errors of commission, which 

represents the likelihood of a classified pixel matching the land cover type of its 

corresponding real-world location (Campbell 2007, Congalton 1991, Jensen 2005).  Error 

matrices have been used in many land classification studies and they were an essential 

component of this research.   

 

2.3 Sources for Deriving Ground Truth Data 

 When performing LULC classifications, one needs ground truth data to provide 

an unbiased reference necessary to conduct accuracy assessments.  Because landscapes 

can change rapidly, it is important that training data and ground truth data are acquired at 

dates as close to each other as possible.  While it is ideal to acquire ground truth data by 

visiting sites on the ground and performing direct observations, there can be factors that 

prevent gathering such in situ measurements.  These limiting factors include prohibitive 

costs (Alrababah and Alhamad 2006), the sheer size of the study area (Hung and Wu 

2005), an inability to temporally match ground truth data with acquisition dates for 

remotely sensed imagery (Madhavan et al. 2001), and inaccessibility to certain parts of 

the study area (Hung and Wu 2005, Campbell 2007).  When in situ measurements are not 

possible, many researchers substitute direct observations with imagery that has a much 
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higher spatial and/or spectral resolution than the imagery used for the LULC 

classifications (Jensen 2005).  
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CHAPTER 3: CONCEPTUAL FRAMEWORK AND METHODOLOGY 

 

3.1 Description of Study Area 

 Little Rock is the capital city of Arkansas and is located near the geographic 

center of the state.  While Little Rock does have a robust urban center expected of a state 

capital, it also contains many natural features within its city limits.  Little Rock lies on the 

southern bank of the Arkansas River.  The western edge of the city rises into the Ozark 

Mountains while the eastern portion of the city extends towards the Mississippi River 

Delta.  Finally, there are plains that gently roll southwest towards Texas (Bell 2013).  

With such a diversity of features, Little Rock provides the perfect contrast of land cover 

types to test the accuracy of supervised and unsupervised classification.  Figure 1 shows a 

visual depiction of the overall study area. 

 

 

Figure 1.  Screenshot of study area with selected features labeled.  This figure was 
derived from Landsat 7 imagery with false color display (R,G,B/4,3,2).   
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3.2 Description of Data Sources 

The main imagery for the land cover classifications performed in this study was 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery.  ETM+ features eight 

spectral bands: three in the visible spectrum (Bands 1-3), two near-infrared (Bands 4-5), 

one thermal (Band 6), one mid-infrared (Band 7), and one panchromatic (Band 8).  Band 

6 has a spatial resolution of 60 meters, Band 8 has a spatial resolution of 15 meters, and 

the remaining bands have spatial resolutions of 30 meters.  A Landsat 7 image, or scene, 

is approximately 170 kilometers by 185 kilometers (106 miles x 115 miles) (United State 

Geological Survey 2013).  Because of their differing spatial resolutions, Bands 6 and 8 

were omitted from any analysis (Hung and Ridd 2002).  Additionally, Landsat 7 scenes 

with the Scan Line Corrector (SLC) off were not suitable for this research.  Therefore, the 

Landsat imagery was limited to a scene with the SLC on.  The ETM+ imagery used in 

this study was acquired on April 1, 2003 at 1631 hours Coordinated Universal Time 

(UTC).  ETM+ imagery was chosen for this research due to the rich spectral information 

contained within, the stability of data availability, and the fact that the imagery is 

available at no cost. 

Ground truth data is essential to performing accuracy assessment.  Because of the 

time elapsed from the ETM+ imagery to the present, obtaining ground truth data through 

in situ readings may have resulted in inaccurate findings.  Instead, ground truth was 

derived from higher resolution National Agriculture Imagery Program (NAIP) imagery.  

The NAIP imagery was acquired in 2006 and has a spatial resolution of two meters. 
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3.3 Methodology 

 

3.3.1 Conceptual Overview 

There were three phases in conducting this research: initial image processing, 

supervised/unsupervised classification, and accuracy assessment.  Initial image 

processing involved obtaining the necessary ETM+ and NAIP imagery, then identifying 

and isolating suitable homogeneous, intermediate, and heterogeneous study areas. The 

classification phase involved performing supervised and unsupervised classification on 

each of the study areas.  For accuracy assessment, 200 stratified random points were 

created for each study area and then LULC class was retrieved from each of the classified 

images.  In the meantime, ground truth data at locations corresponding to these sampling 

points were visually interpreted from the NAIP image.  Finally, all points were put into 

error matrices to assess the accuracy of each classification approach in each study area.  

Figure 2 provides a graphical representation of the conceptual overview. 

 

3.3.2 Initial Image Processing 

As previously mentioned, the first phase of analysis involved the initial 

processing of ETM+ and NAIP imagery.  A single ETM+ scene was downloaded from 

the United States Geological (USGS) Global Visualization Viewer (GloVis) website.  

Using a total of four land cover classes (vegetation, impervious surface, soil, and water), 

the ETM+ scene was then loaded into ERDAS Imagine where it was subdivided into 

three study areas: one of homogeneous land cover, one heterogeneous, and one 

intermediate.  The homogeneous area was defined as an area where 50% of the pixels are 
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classified as one land cover type.  A study area comprised mostly of water features was 

ideal for the homogeneous area because it absorbs most of the energy from the visible 

light and infrared bands, thus making it easier to distinguish from other types of land  

cover.  The intermediate area was defined as one where two of the four land cover types 

each comprised at least 35% of the pixels.  Water and vegetation were the two land cover 

classes chosen to comprise the majority of the intermediate study area.  High accuracy for 

classifying water features was possible due to its previously mentioned spectral 

properties while high accuracy for classifying vegetation features was possible due to its 

high reflectance in the near-infrared spectrum and relatively low reflectance in visible 

light (red edge).  The heterogeneous area was defined as an area where all four land cover 

classes each comprised at least 20% of the total pixels in the study area.  The 

homogeneous, intermediate, and heterogeneous areas were approximately 2 square miles 

(5.3 square kilometers).  There are 5,893 pixels in each study area.  After performing 

visual analysis and then supervised and unsupervised classifications, the percentage of 

pixels for each land cover class in each study area were computed in order to ensure that 

the study areas met the previously mentioned criteria.   Unfortunately, there was one 

study area and classification combination that was slightly below the criteria – the 

supervised classification of the intermediate area.  For the supervised classification of the 

intermediate area, the percentage breakdowns were 27.0% for vegetation, 7.2% for 

impervious surfaces, 24.6% for soil, and 41.2% for water.  Because these percentages 

were close to the prescribed criteria and radically different from the unsupervised 

classification percentages, this area was maintained because of its potential for interesting 
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and meaningful analysis.  Figures 3 and 4 show the locations of each study area overlaid 

on ETM+ and NAIP imagery, respectively.  

 

3.3.3 Supervised Classification 

Once the homogeneous, intermediate, and heterogeneous areas were defined, 

supervised classification was performed on each of the study areas.  All pixels were 

assigned to one of four land cover classes: vegetation, impervious surfaces, soil, and 

water.  The Maximum Likelihood Classification (MLC) algorithm was the chosen 

method for supervised classification.  For the homogeneous study area, a minimum of 

twelve training sites (three for each LULC class) were created based on pixel clusters that 

corresponded to pre-defined four LULC classes.  The same process was repeated for the 

intermediate and the heterogeneous study areas.  Each set of twelve training sites was 

exclusive to its respective study area; a training site that was used in one study area was 

not used in either of the remaining two study areas.  Spectral signatures of like land cover 

type were then merged so that each study area would only have four spectral signatures – 

one for each land cover class.  Figure 5 shows the supervised classification and 

associated training sites for the homogeneous, intermediate, and heterogeneous study 

areas.  Spectral signature plots were then produced from the merged training site 

signatures of the homogeneous, intermediate, and heterogeneous study areas.  The 

spectral signature plots for these LULC classes in each of the sub-areas are shown in 

Figure 6. 
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Figure 2. Workflow process 
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Figure 3.  Screenshot of homogeneous, intermediate, and heterogeneous study areas 
(ETM+ overlay).  This figure was derived from Landsat 7 imagery false color display 
(R,G,B/4,3,2).   
 

 

Figure 4.  Screenshot of homogeneous, intermediate, and heterogeneous study areas 
(NAIP overlay).   
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(a) Homogeneous study area 

 

(b) Intermediate study area 

Figure 5.  Supervised classification with delineated training sites for (a) homogeneous 
study area, (b) intermediate study area, and (c) heterogeneous study area.  Purple lines 
represent vegetation training sites, black lines represent impervious surface training sites, 
yellow lines represent soil training sites, and white lines represent water training sites. 
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(c) Heterogeneous study area 

Figure 5 (continued).  Supervised classification with delineated training sites for (a) 
homogeneous study area, (b) intermediate study area, and (c) heterogeneous study area.  
Purple lines represent vegetation training sites, black lines represent impervious surface 
training sites, yellow lines represent soil training sites, and white lines represent water 
training sites. 
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(a) Homogeneous study area 

 

(b) Intermediate study area 

Figure 6.  Supervised classification signature mean plots for (a) homogeneous study area, 
(b) intermediate study area, and (c) heterogeneous study area.  The x-axis represents 
Landsat bands 1-6 and the y-axis represents a mean brightness value. 
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(c) Heterogeneous study area 

Figure 6 (continued).  Supervised classification signature mean plots for (a) 
homogeneous study area, (b) intermediate study area, and (c) heterogeneous study area.  
The x-axis represents Landsat bands 1-6 and the y-axis represents a mean brightness 
value. 

 

3.3.4 Unsupervised Classification 
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remained in the same cluster between iterations.  After the completion of the 

unsupervised classification process, each of the 100 spectral classes was assigned to the 

most appropriate land cover class.  For comparison purposes, the spectral signature mean 

plots derived from the unsupervised classification for these LULC classes in each of the 

sub-areas are shown in Figure 7. 
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(a) Homogeneous study area 

 

(b) Intermediate study area 

Figure 7.  Unsupervised classification signature mean plots for (a) homogeneous study 
area, (b) intermediate study area, and (c) heterogeneous study area.  The x-axis represents 
Landsat bands 1-6 and the y-axis represents a mean brightness value. 
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(c) Heterogeneous study area 

Figure 7 (continued).  Unsupervised classification signature mean plots for (a) 
homogeneous study area, (b) intermediate study area, and (c) heterogeneous study area.  
The x-axis represents Landsat bands 1-6 and the y-axis represents a mean brightness 
value. 
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unsupervised classification, and ground truth land cover classes for each point in each 

study area, these data were then compiled into error matrices.  While ERDAS Imagine 

allowed for automated accuracy assessment for each supervised classification, the 

software was unable to import the points necessary for accuracy assessment for each 

unsupervised classification.  To mitigate this technical difficulty, all accuracy assessment 

was completed in Microsoft Excel.  

 

Figure 8.  ETM+ (supervised classification) image of the heterogeneous study area 
overlaid with 200 points from stratified random sampling.  The same process was 
conducted for the homogeneous and intermediate study areas.  
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CHAPTER 4: ANALYSIS RESULTS AND DISCUSSION 

 

4.1 Classification Results 

 For each of the study areas (homogeneous, intermediate, and heterogeneous), 

there were a total of 5983 pixels. In the homogenous study area, the number of water 

pixels was 3284 and 3644 for supervised classification and unsupervised classification, 

respectively.  This resulted in water coverage of 55.7% for supervised classification and 

61.8% for unsupervised classification.  For the intermediate study area, there were 1591 

pixels (27.0%) of vegetation and 2428 pixels (41.2%) of water for the supervised 

classification.  For the unsupervised classification of the intermediate study area, there 

were 2434 pixels (41.3%) and 2581 pixels (43.8%) for vegetation and water, respectively.  

In the heterogeneous study area, the percentage range for the land cover classes was 

between 21.9% to 32.2% for supervised classification and 20.3% to 29.6% for 

unsupervised classification.  Table 1 provides a visual summary for the pixel numbers 

and percentages for each combination of study area and classification approach.  The 

column labeled “# Pixels” shows the number of pixels assigned to each land cover class 

for each combination of study area and classification approach while the column labeled 

“% Pixels” coverts the aforementioned numbers into a percentage out of 5983 total pixels.  

Figure 9 shows the supervised classification results for the study area and Figure 10 

shows the unsupervised classification results for the study area.  
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Table 1.  Pixel count/percentage for each study area/classification method combination  

(a) Pixel count/percentage of homogeneous study area using supervised classification 

Homogeneous Supervised # Pixels % Pixels 

Vegetation 1633 27.7

Impervious Surface 640 10.9

Soil 336 5.7

Water 3284 55.7

 

(b) Pixel count/percentage of homogeneous study area using unsupervised classification  

Homogeneous Unsupervised # Pixels % Pixels 

Vegetation 1878 31.9

Impervious Surface 241 4.1

Soil 130 2.2

Water 3644 61.8

 

(c) Pixel count/percentage of intermediate study area using supervised classification  

Intermediate Supervised # Pixels % Pixels 

Vegetation 1591 27.0

Impervious Surface 424 7.2

Soil 1450 24.6

Water 2428 41.2
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Table 1 (continued) 

(d) Pixel count/percentage of intermediate study area using unsupervised classification  

Intermediate Unsupervised # Pixels % Pixels 

Vegetation 2434 41.3

Impervious Surface 843 14.3

Soil 35 0.6

Water 2581 43.8

 

(e) Pixel count/percentage of heterogeneous study area using supervised classification  

Heterogeneous Supervised # Pixels % Pixels 

Vegetation 1896 32.2

Impervious Surface 1291 21.9

Soil 1312 22.3

Water 1394 23.7

 

(f) Pixel count/percentage of heterogeneous study area using unsupervised classification  

Heterogeneous Unsupervised # Pixels % Pixels 

Vegetation 1744 29.6

Impervious Surface 1237 21.0

Soil 1198 20.3

Water 1714 29.1
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(a) Homogeneous study area 

 

(b) Intermediate study area 

 

(c) Heterogeneous study area 

Figure 9.  Supervised classification results of (a) homogeneous, (b) intermediate, (c) 
heterogeneous and (d) overall study areas.  Green areas represent vegetation, cyan areas 
represent impervious surfaces, red areas represent soil, and blue areas represent water.   
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(d)  Overall study area with sub-areas delineated 
 
Figure 9 (continued).  Supervised classification results of (a) homogeneous, (b) 
intermediate, (c) heterogeneous and (d) overall study areas.  Green areas represent 
vegetation, cyan areas represent impervious surfaces, red areas represent soil, and blue 
areas represent water.     
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(a) Homogeneous study area 

 

(b) Intermediate study area 

Figure 10.  Unsupervised classification results of (a) homogeneous, (b) intermediate, and 
(c) heterogeneous and (d) overall study areas.  Green areas represent vegetation, cyan 
areas represent impervious surfaces, red areas represent soil, and blue areas represent 
water.   
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(c) Heterogeneous study area 

 

(d)  Overall study area with sub-areas delineated 
 
Figure 10 (continued).  Unsupervised classification results of (a) homogeneous, (b) 
intermediate, and (c) heterogeneous and (d) overall study areas.  Green areas represent 
vegetation, cyan areas represent impervious surfaces, red areas represent soil, and blue 
areas represent water.   
 
 
4.2 Error Matrices 

 For two of the three study areas, unsupervised classification was more accurate 

than supervised classification.  For the homogeneous area, the overall accuracy for 
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supervised classification and unsupervised classification was 74.5% and 86.5%, 

respectively.  For the intermediate area, the overall accuracy for supervised classification 

and unsupervised classification was 67.0% and 83.0%, respectively.  While supervised 

classification was more accurate than unsupervised classification in the heterogeneous 

area, the difference in accuracy between the two classification approaches was only one 

percent.  The supervised classification had an overall accuracy of 72.0% while the 

unsupervised classification had an overall accuracy of 71.0%. 

 Regarding user’s accuracy and producer’s accuracy, the water land cover class 

had consistently high values over all three study areas.  As stated previously, water has 

radically different spectral properties than the other land cover classes in the V-I-S model.  

In the signature mean plots, the brightness values for water are much lower in bands 4, 5, 

and 6 when compared to the other land cover classes.  This spectral difference allowed 

water to be readily identified and thus resulted in higher accuracy values.   

For vegetation, user’s accuracy was in the mid-80s or higher for all three study 

areas, but producer’s accuracy was lower ranging from low-50s to mid-80s.  The 

disparity in user’s accuracy and producer’s accuracy indicates a tendency to overestimate 

the number of vegetation pixels.  Soil and impervious surfaces were commonly 

misclassified as vegetation in almost all of the error matrices.  In the signature mean plots, 

vegetation and impervious surfaces had overlapping brightness values mostly in bands 4 

and 5 during supervised classification and bands 1, 2, and 3 during unsupervised 

classification.  These overlapping brightness values occurred only in the homogeneous 

and intermediate study areas.  The heterogeneous study areas had distinctly different 

brightness values.  Regarding the brightness values for vegetation and soil, there were 
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similar values for bands 1 and 4 in the supervised classification of the homogenous and 

intermediate study areas.  There were also similar brightness values for vegetation and 

soil in bands 1 and 2 of the unsupervised classification of the homogenous area.  No other 

combination of classification approach and study area displayed similar brightness values.  

It was interesting to note, however, that none of the signature mean plots for vegetation 

displayed the expected spike in brightness from band 3 to band 4.  In fact, there was a 

near-overlap of the vegetation and soil graphs in Figure 6b, an even closer overlap of the 

vegetation and water graphs in Figure 7a, and a drop in brightness values from band 3 to 

band 4 in Figure 7b.  The near-overlap of vegetation and soil in Figure 6b could explain 

why nearly 50 percent of the vegetation pixels in the error matrix for supervised 

classification of the homogeneous area were misclassified as soil.  The error matrix for 

unsupervised classification of the homogeneous study area featured nine vegetation 

pixels misclassified as water – an error which could have been reflected by the overlap of 

vegetation and water in Figure 7a.  Finally, the drop in vegetation brightness values from 

band 3 to band 4 could explain why nearly a quarter of the vegetation pixels for the 

unsupervised classification of the intermediate study area were misclassified as 

impervious surfaces. 

The lowest producer’s accuracy for impervious surfaces was 68.75% while all of 

the other values ranged between low-80s to 100%.  The user’s accuracy for impervious 

surfaces ranged between low-30s to 50%.  The large difference between user’ accuracy 

and producer’s accuracy indicates a tendency to overestimate the number of impervious 

surface pixels.  In every signature mean plot, impervious surfaces and soil had similar 
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brightness values in band 4.  Band 6 was another area of common brightness values in all 

but one of the signature plots. 

Accuracy values for soil displayed much more variance.  User’s accuracy ranged 

from 0 to 53.3% while producer’s accuracy ranged from 0 to 100%.  The wide range of 

accuracy indicates a severe confusion of soil with other land cover classes.  Soil pixels 

were both overestimated and underestimated in the various study areas.  The majority of 

overestimation was due to the misclassification of vegetation as soil, particularly in 

regards to supervised classification.  Conversely, an underestimation of soil occurred 

where soil pixels where mainly misclassified as impervious surfaces, particularly in the 

heterogeneous study area.  In the signature mean plots, soil and water had similar 

brightness values in bands 1 and 2, while the brightness values in bands 3 through 6 

displayed anywhere from small to great divergence. 

Based on the supervised classification signature mean plots produced in ERDAS 

Imagine (see figure 6), the reflectivity in bands 4, 5, and 6 was similar between 

impervious surfaces and soil in the homogeneous and heterogeneous study areas.    This 

could explain the instances of soil being misclassified as impervious surfaces as well as 

contributing to user’s accuracy values below 50 percent.  In the intermediate study area, 

impervious surfaces had similar reflectance in bands 4, 5, and 6 with both soil and 

vegetation.  Consequently, all three land cover classes showed a wide variance of user’s 

accuracy ranging from 6 to 100 percent and producer’s accuracy ranging from 53.06 to 

100 percent.  Soil and vegetation had similar reflectance in band 4 in the homogeneous 

and heterogeneous study areas.  While vegetation had user’s accuracy above 80 percent, 
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all other user’s and producer’s accuracy values for vegetation and soil were 70 percent or 

less. 

For the unsupervised classification, the signature mean plots also show similar 

reflectivity in bands 4, 5, and 6 between impervious surfaces and soil in both the 

homogeneous and heterogeneous study areas (see figure 7).  In the heterogeneous area, 

impervious surfaces and soil actually have similar reflectivity in all six bands.  In the 

intermediate study area, impervious surfaces and water share similar reflectivity in all six 

bands.  While the user’s accuracy for impervious surfaces was 36.84%, the other user’s 

and producer’s accuracy values were 89% or higher.  Also in the intermediate study area, 

vegetation exhibits similar reflectivity with impervious surfaces and water in bands 1, 2, 

and 3.  Both user’s and producer’s accuracy for vegetation were high at 94.87% and 

75.51%, respectively.  In the heterogeneous area, vegetation and water feature similar 

reflectivity across bands 1, 2, and 3.  The producer’s accuracy for vegetation is 59.52% 

while the other accuracy values for vegetation and water are greater than 86%.  Table 2 

shows the full error matrices for the homogeneous, intermediate, and heterogeneous 

study areas.   
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Table 2.  Error matrices 

(a) Error matrix for supervised classification of the homogeneous study area 

Supervised Classification (Homogeneous) 

  Vegetation Imp. Surface Soil Water Total User’s 

Vegetation 51 0 0 2 53 96.23% 

Imp. Surface 13 11 3 8 35 31.43% 

Soil 23 0 7 0 30 23.33% 

Water 2 0 0 80 82 97.56% 

Total 89 11 10 90 200   

Producer’s 57.30% 100.00% 70.00% 88.89%     

Overall Accuracy =  74.50%

Kappa Coefficient =  62.52%

         

(b) Error matrix for unsupervised classification of the homogeneous study area 

Unsupervised Classification (Homogeneous) 

  Vegetation Imp. Surface Soil Water Total User’s 

Vegetation 73 0 0 1 74 98.65% 

Imp. Surface 1 9 4 4 18 50.00% 

Soil 6 0 6 0 12 50.00% 

Water 9 2 0 85 96 88.54% 

Total 89 11 10 90 200   

Producer’s 82.02% 81.82% 60.00% 94.44%     

Overall Accuracy =  86.50%

Kappa Coefficient =  77.92%
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Table 2 (continued) 

(c) Error matrix for supervised classification of the intermediate study area 

Supervised Classification (Intermediate) 

  Vegetation Imp. 
Surface Soil Water Total User’s 

Vegetation 52 0 0 0 52 100.00% 

Imp. Surface 6 11 0 13 30 36.67% 

Soil 40 5 3 2 50 6.00% 

Water 0 0 0 68 68 100.00% 

Total 98 16 3 83 200   

Producer’s 53.06% 68.75% 100.00% 81.93%     

Overall Accuracy =  67.00%

Kappa Coefficient =  53.89%

         

(d) Error matrix for unsupervised classification of the intermediate study area 

Unsupervised Classification (Intermediate) 

  Vegetation Imp. 
Surface Soil Water Total User’s 

Vegetation 74 2 2 0 78 94.87% 

Imp. Surface 23 14 1 0 38 36.84% 

Soil 1 0 0 5 6 0.00% 

Water 0 0 0 78 78 100.00% 

Total 98 16 3 83 200   

Producer’s 75.51% 87.50% 0.00% 93.98%     

Overall Accuracy =  83.00%

Kappa Coefficient =  73.08%
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Table 2 (continued) 

(e) Error matrix for supervised classification of the heterogeneous study area 

Supervised Classification (Heterogeneous) 

  Vegetation Imp. 
Surface Soil Water Total User’s 

Vegetation 54 0 4 6 64 84.38% 

Imp. Surface 10 19 15 0 44 43.18% 

Soil 20 1 24 0 45 53.33% 

Water 0 0 0 47 47 100.00% 

Total 84 20 43 53 200   

Producer’s 64.29% 95.00% 55.81% 88.68%     

Overall Accuracy =  72.00%

Kappa Coefficient =  61.80%

         

(f) Error matrix for unsupervised classification of the heterogeneous study area 

Unsupervised Classification (Heterogeneous) 

  Vegetation Imp. 
Surface Soil Water Total User’s 

Vegetation 50 1 5 2 58 86.21% 

Imp. Surface 11 18 14 0 43 41.86% 

Soil 21 1 23 0 45 51.11% 

Water 2 0 1 51 54 94.44% 

Total 84 20 43 53 200   

Producer’s 59.52% 90.00% 53.49% 96.23%     

Overall Accuracy =  71.00%

Kappa Coefficient =  60.64%

 

4.3 Comparisons between Supervised and Unsupervised Classifications 

Supervised and unsupervised classifications each have their own strengths and 

weaknesses.  Supervised classification is advantageous because it uses a relatively small 

number of classes to determine the appropriate land cover for each pixel.  This allows for 

a streamlined and focused analysis.  The disadvantage of supervised classification is that 

it requires much user input prior to performing any classifications.  This portion of the 

analysis is time-consuming and, if there are any user-induced errors, the user will have to 



42 
 

restart the training site selection process, possibly more than once.  The effectiveness of 

supervised classification increases if the analyst is more familiar with a particular study 

area (Jensen 2005). 

The much larger number of spectral classes in unsupervised classification allow 

for a more detailed and nuanced approach to assign land cover classes to smaller groups 

of pixels.    Unfortunately, the increased number of pixel clusters can make it difficult to 

decide exactly what feature a particular cluster represents.  This is especially apparent in 

areas with mixed pixels or with clusters that appear to cover multiple, yet distinctive, land 

cover types.  Unsupervised classification may be suitable for analysts who are unfamiliar 

with a study area (Jensen 2005) or as a way to identify land cover classes suitable to 

conduct supervised classification at a later time (Mohammed and Rusthum 2008).  Table 

3 provides a summary of the overall accuracy and kappa coefficient for each 

classification approach in each study area.  The overall accuracy is a measure of how well 

the classified pixels match the ground truth data while the Kappa coefficient measures 

how well the classification in question would compare to a chance arrangement of pixels 

to each land cover class.   

Regarding LULC composition, the water features in all study areas displayed high 

producer’s accuracy in excess of 80 percent for supervised classification and 90 for 

unsupervised classification.  These findings for water are expected considering how the 

spectral properties are different compared to the other three land cover classes.  

Impervious surfaces had the second highest producer’s accuracy which ranged from 

68.75 to 100 percent for supervised classification and 81.82 to 90 percent for 

unsupervised classification.  While the number of misclassified pixels was low overall, 
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impervious surfaces were mostly misclassified as soil.  The classification of vegetation 

was only moderately accurate with producer’s accuracy ranging from 53.06 to 64.29 

percent for supervised classification and 59.52 to 82.02 percent for unsupervised 

classification.  Vegetation was mainly misclassified as soil.  For the homogeneous and 

the heterogeneous areas, producer’s accuracy for soil ranged between 55.81 to 70 percent 

for supervised classification and 53.49 to 60 percent for unsupervised classification.  Soil 

was mostly misclassified as impervious surfaces in the homogeneous and heterogeneous 

areas.  In the intermediate study area, the producer’s accuracy for soil was 100 percent 

and 0 percent for supervised and unsupervised classification, respectively.  Of note, 

however, is the fact that there were only three soil pixels in the intermediate study area 

for each classification approach.  Unless an analyst has vast knowledge of a study area 

and extensive research with LULC classification, unsupervised classification will most 

likely provide the most effective means of delineating between land use and land cover 

classes.  The analyst can always use the unsupervised classification results as a starting 

point for supervised classification, as well as any of the hybrid or object-based 

approaches not covered in this thesis. 

 

Table 3.  Overall accuracy and Kappa coefficient percentages 

Study Area Classification 
Approach 

Overall Accuracy 
(%) 

Kappa Coefficient (%) 

Homogeneous Supervised 74.50 62.52 
Homogeneous Unsupervised 86.50 77.92 
Intermediate Supervised 67.00 53.89 
Intermediate Unsupervised 83.00 73.08 
Heterogeneous Supervised 72.00 61.80 
Heterogeneous Unsupervised 71.00 60.64 
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CHAPTER 5: CONCLUSION 

The primary objective of this research was to contrast the accuracy of supervised 

classification and unsupervised classification using the V-I-S model.  In the 

homogeneous and intermediate study areas, unsupervised classification was more 

accurate than supervised classification.  In the heterogeneous study area, supervised 

classification was more accurate by a mere one percent.  These findings were contrary to 

the reviewed literature. 

Another objective of this research was to determine guidelines for choosing 

supervised or unsupervised classification for future LULC studies.  The most important 

factor in deciding which classification to use is the amount of a priori knowledge an 

analyst has about a study area.  If the analyst is not intimately familiar with the LULC 

patterns of an area, unsupervised classification would most likely be more effective.  

While this thesis research was conducted by a resident of the Little Rock area, the lack of 

experience in identifying local LULC patterns most likely led to the decreased accuracy 

of the supervised classifications.  Regardless of a priori knowledge, an analyst may want 

to use unsupervised classification as a means to identify LULC classes, which can then 

be applied to a supervised classification.  In some situations, unsupervised classification 

may be the only method capable of producing viable LULC classes. 

 

5.1 Research Limitations 

This is an experimental project from which many lessons can be learned.  The 

ability to obtain ground truth data was the largest limiting factor in this research.  Since 

obtaining in situ ground truth data was not possible for this research, using higher 
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resolution imagery was the best alternative method.  Unfortunately, the amount of no-cost 

and/or low-cost high resolution imagery was limited, which resulted in using an NAIP 

image acquired three years after the SLC-on ETM+ imagery used in this research.  It was 

fortunate, however, that the images were taken at the same time of the year, thus resulting 

in few differences between the environmental composition and spectral characteristics of 

the NAIP and ETM+ imagery.  Also fortunate was the fact that there was very little 

change in the urban landscape between the two images, thus resulting in a more 

consistent comparison between the classified pixels and their associated ground truth. 

Another limitation in this research was inexperience in conducting real-world land 

cover classification and deriving ground truth from remotely sensed imagery.  If 

individuals with greater remote sensing experience and proficiency were to conduct 

similar studies, they would most likely achieve more accurate results in a shorter period 

of time.  These limitations, however, did not have any significant impact on achieving the 

objectives of this research. 

 

5.2 Suggested Areas for Further Research Study 

There are many possible areas for further research based on the findings and 

results of this study.  One possible avenue of expanding on this research would be to use 

a larger number of study areas with a wider variety of land cover compositions.  For 

example, future researchers could analyze homogenous areas where water does not 

comprise the majority of the land cover or they could analyze intermediate areas where 

the majority land cover combination is something other than vegetation and water.  

Additionally, researchers could use a greater number of land cover classes than that 
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offered by the V-I-S model, or they could use object-based and/or sub-pixel analysis in 

lieu of the relatively simple supervised and unsupervised classification approaches 

described in this research.   

In addition to image classification methods and classification scheme, ground 

truth data is another avenue for future research.  This study used ETM+ and NAIP 

imagery with acquisition dates that were approximately three years apart.  Using a wider 

variety of imagery with closer dates of acquisition could possibly lead to more objective 

evaluation of the classification accuracy.  By acquiring more recent imagery for analysis, 

it could also be possible to compare in situ ground truth data with that of high-resolution 

imagery. Again, this could lead to more objective evaluation of the classification 

accuracy. 
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