TRADITIONAL GRADING AND STUDENT ACHIEVEMENT

By

MERIDETH USSERY

Submitted to
Professional Education Faculty
Northwest Missouri State University Missouri
Department of Professional Education
College of Education and Human Services
Maryville, MO 64468

Submitted in Fulfillment for the Requirements for
61-683 Research Paper

Spring 2014

December 31, 2014
ABSTRACT

The following study was prepared to determine if there was a correlation between classroom grades in a junior high mathematics class and the mathematics MAP assessment given in the spring of 2012. The data collected included average class percentages for forty-eight students and the same student’s MAP scores as reported by CTB/McGraw-Hill/DESE. Correlation between the two variables will be provided, along with a detailed explanation of the findings. It was found in this study that the classroom percentages directly correlated with student achievement on the mathematics MAP assessment. Therefore, in this given classroom, grades do indicate how successful a student will perform on a standardized test.
INTRODUCTION

Background, issues and concerns.

The Missouri Assessment Program (MAP) has been used since 1996 to determine students’ understanding of grade level standards in mathematics and language arts. Although these tests weigh heavily on a school’s reputation, funding, and accreditation, they are not always an indicator of student success within the district. Most schools continue to operate on a traditional grading system which has raised many questions. The traditional grading system takes into account factors not related to academics and have been very subjective in nature. With growing concerns of the traditional grading system and raised emphasis on standardized tests, researchers suggest moving to a standard’s based grading approach to assess student achievement in daily classroom activities.

Practice under investigation.

The practice under investigation will consist of looking at students’ level of proficiency on the mathematics section of the MAP assessments as well as classroom grades. This will help determine if current grading practices successfully demonstrate student understanding of grade level expectations in mathematics classrooms. If there is a major discrepancy between MAP scores and the traditional classroom grading system, teachers will be guided to consider implementing standards based grading in their classrooms.

School policy to be informed by study.

An important aspect taken into consideration when providing schools with accreditation is the school’s ability to meet the AYP standards set on MAP assessments. With the growing emphasis being placed on standardized tests and the push to a more rigorous curriculum, teachers
need to consider alternate grading practices to gain a better understanding of the standards their students know and the standards their students do not know.

Conceptual underpinning.

When being assessed on the MAP tests, students are expected to perform proficient or advanced. This level of proficiency demonstrates a strong understanding of grade level expectations set forth by the state of Missouri. In regards to class grades, most schools leave it up to individual classroom teachers the factors calculated into daily grades. For example, some teachers allow extra credit and provide participation points in their classes; while others grade strictly based on the academic concepts being addressed on a day to day basis. The commonality between both of these practices is that the student receives no more feedback than the letter grade. In the traditional grading system, students receive a letter grade but are left to wonder what the letter grade truly means. An *A* in one class looks significantly different than an *A* in the class next door. With such great inconsistencies in grading practices, researchers are suggesting the use of standards based grading.

Standards based grading as described by Douglas Reeves (2011) is more accurate, more fair, more specific, and more timely (p. 1). This practice also allows teachers, students, parents, administrators, and other stakeholders to better understand the standards in which students know and the standards students do not know. The data collected from this study is designed to help districts decide if their current grading practices indicate student knowledge of grade level expectations assessed on the MAP tests in the area of mathematics.
Statement of the problem.

If there is a significant gap between class grades and MAP scores, teachers need to be aware of other grading practices more appropriate to show student growth and knowledge of grade level content standards.

Purpose of the study.

The purpose of the study is to see if there is a direct relationship between semester mathematics class grades and MAP scores.

Research questions.

RQ#1: Is there a relationship between mathematics class grades and MAP scores?

Null hypothesis.

There is no relationship between mathematics class grades and MAP scores.

Anticipated benefits of the study.

If class grades indicate level of proficiency on mathematics MAP tests, the current grading practices in place are successful in signifying mastery of grade level expectations. If class grades are not an indicator of levels of proficiency on mathematics MAP tests, the district should investigate alternate grading practices such as standards based grading to better match class grades to skill mastery. Thus, the results of this study will be used to examine the grading practices currently in place and give appropriate data to drive a more rigorous, honest grading system.

Definition of terms.

AYP- Annual Yearly Progress- In 2000, No Child Left Behind (NCLB) set benchmarks for districts to reach showing progress yearly in the areas of mathematics and language arts. With its
Traditional grading, waivers have now been given to states while the NCLB initiative is being revamped and reconsidered.

DESE- Department of Elementary and Secondary Education. The governing body for K-12 education in Missouri.

MAP- Missouri Assessment Program- tests given in the state of Missouri at the end of each school year to students grades 3-8 in the areas of mathematics, English language arts, and science. These assessments were designed in 1996.

Standards based grading- a way to measure student proficiency based on well defined class objectives.

Traditional grading- a grading scale where students are given percents on a scale of 0-100% and a letter grade to go along with the percent. The letter grades are typically A, B, C, D, F in the traditional grading scale.

Summary.

A study was conducted to see if there was a significant correlation between classroom grades and MAP test scores in the area of mathematics. If the correlation analysis concludes there were significant discrepancies in grades and test scores, districts should consider alternative grading practices to give a better understanding of student’s content knowledge. Once this study is complete, the data should be used to drive decisions in the area of student performance on standardized tests and current grading practices. Districts would benefit from using professional development time to address issues with current grading practices and investigate more accurate practices.
REVIEW OF LITERATURE

As stated by Martha Keeney (2000) in her article titled *Understanding Grading Procedures*, “The issue of grading and reporting student learning have perplexed educators for the better part of the last 100 years” (p. 68). Grading and evaluating date back to the 1800s where schools took very subjective and unstructured means towards understanding student learning. In the 1800’s, teachers would write down the skills that students mastered and once the student completed the requirements for one level, he/she would move to the next level (Keeney, 2000, p. 69). This way of assessing continued on into the early 1900s when high school teachers were introduced to percentage based grading.

During the early 1900s, Keeney (2000) reported teachers accepted the gradual shift to percentage based grading, until 1912 when Starch and Elliott published a study challenging the percentage based grading system (p. 69). The debate over grading continued over the next several years. Elliott and Starch repeated their study which provide even greater variations in teacher’s grading practices. In short, Daniel Starch and Edward Elliot distributed the same English paper to 142 teachers. Each teacher graded the paper, and the results were not surprising. Keeney (2000) relays the results as follows, on a 0 to 100 scale, 15% gave a failing mark, 12% gave the exact same score which was above 90%, and the other scores ranged from 50 to 97% (p. 69). The teachers not only graded the paper differently, but they graded the paper based on different criteria. Some teachers graded for neatness, spelling, and punctuation, while others considered the message of the paper (Keeney, 2000, p.69). Thus, the grading debacle truly began to shape the debate that still exist today.

In addition to the grading debate, No Child Left Behind has increased expectations in public schools in regards to student achievement. No Child Left Behind, an educational
initiative, signed by President George W. Bush in 2002 requires students in grades 3-8 to participate in some form of standardized testing in the areas of mathematics and reading (“No Child Left Behind,” 2011). As the Common Core State Standards are becoming a reality, the testing process is due to change once again. The state tests are currently aligned to the state standards and will be soon replaced with a set of tests that are aligned to the Common Core State Standards. In the Education Week article titled No Child Left Behind, the ultimate goal of No Child Left Behind was stated as, “…bringing all students up to the "proficient" level on state tests by the 2013-14 school year” (2011, Academic Progress Section, para. 5). Although waivers are being given and changes are being made to the initial initiative, No Child Left Behind still exists. Thus, educators at all levels are forced to ensure student mastery of grade level expectations.

Knowing the importance of student achievement and the impacts student achievement has on the day to day operation of the public schools, how are teachers assessing students’ understanding? What does an A at the top of the paper mean? Do students truly know the meaning of the grades they are receiving? Many teachers, schools, and districts are approaching grading in different ways. They are transforming the traditional grading systems into a standards based approach where student, teacher, parent, administrator, and all other stakeholders can look at a grade and know exactly what the student has or has not mastered within the class. Many authors have conducted studies and publish great work supporting alternative grading approaches to the traditional approach.

Several articles exist supporting standards-based grading over traditional grading systems. As stated in Eight Steps to Meaningful Grading, standards-based grading is defined as grading that communicates only content mastery, while traditional grading tends to lead to
“grade fog” which includes factors other than mastery of standards (Deddeh, Main, & Fulkerson, 2010, p. 54). Thus, standards-based grading helps report an accurate picture of student understanding. Another report written by Kyle Spencer (2012) claims standards-based grading changes how students view their time in school and how engaged they become in their mastery of content standards (p. 7). The support for standards-based grading has gained popularity with the adoption of the Common Core State Standards. Spencer (2012) claims that as educators move toward a more uniform understanding of what student should know, this approach has grown more popular at all grade levels (p. 5). In addition to short articles showing support for standards-based grading, several accomplished educational researchers have written entire books revolving around the need for grading reform.

Douglas Reeves (2011), an educational researcher, has printed a great work regarding grading called *Elements of Grading: A Guide to Effective Practice*. Reeves begins this book describing why changes need to be made to the current, traditional grading system. The above stated reasons were amongst two of the main reasons. Reeves describes four essential elements of grades: grades must be accurate, grades must be fair, grades must be specific, and grades must be timely (p. 9). Reeves continues throughout his book describing the importance of feedback. Again, Reeves describes four characteristics of effective feedback. The four characteristics include: accuracy, fairness, specificity, and timeliness (Reeves, 2011, p. 30). In order to determine the validity of the grading policies within classrooms, Reeves recommends the exact study in which was conducted in this research paper. Reeves (2011) states, “One way to examine the extent to which grading policies are potentially prejudicial is to evaluate the relationship between student performance as measured by grades and the performance of the same students as
measured by external indicators” (p. 35). Now, what should educators do with this information? Reeves discusses means to making the grading system more accurate, fair, specific, and timely.

Another highly regarded researcher, Robert Marzano, supports standards based grading approaches in his work titled, *Formative Assessment & Standard-Based Grading*. Marzano (2010) suggests two different standards approaches in his text, Standards-Referenced Approach and Standards-Based Approach. First, Marzano describes the Standards-Referenced Approach. Marzano (2010) recommends reorganizing the state standards into a format that can be used to track student progress into a series of learning goals (p. 112). The learning goals are then organized into reporting topics which correlate to “chapters” and then into strands which correlate to “units” (Marzano, 2010, p. 112). At the end of each reporting period, teachers report student achievement based on a scale predetermined by the district. Marzano (2010) expresses the importance of providing a baseline for where the student started when entering the class (p. 114). Districts would have the ability to set their own scale; however, the 0-4 mastery scale would allow the district to convert student achievement to a GPA in which will be needed for postsecondary schools (Marzano, 2010, p. 117). In a standards-referenced system, students do not have to demonstrate proficiency in each specific standard prior to moving to the next grade level which is the main difference between the standards-referenced system and the standards-based system introduced by Marzano (Marzano, 2010, p. 117).

In Marzano’s (2010) Standards-Based grading system students are not in a specific grade based on their age; however, they are moved along a continuum of knowledge based on their demonstrated competence (p. 119). In Marzano’s (2010) Standards-Based grading system, students receive instruction in each area at the appropriate level which generates large logistics, scheduling, and staffing issues (p. 120). In this system, students do not progress to the next level
of learning until all standards for the given level are mastered. Thus, grades are not computed, rather a ratio of number of standards complete to the total number of standards in the given area are reported (Marzano, 2010, p. 120). This grading system is would be a huge undertaking by any district; therefore, all the logistics would need to be considered prior to jumping into Marzano’s standards-based grading approach.

Rick Wormeli is the third educational research that has heavily supported standards-based grading in his work called *Fair Isn’t Always Equal: Assessing & Grading in the Differentiated Classroom*. Wormeli (2006) dictates that if a school is considering a shift in grading, which needs to happen, first, a school should develop a common understanding as to what true mastery means (p. 11). After a district has determined what mastery looks like, teachers should work together to determine what is important to master. Wormeli (2006) states that, “Annually is not too often to examine benchmarks, standards, and what we consider essential” (p. 17). This holds true for first year teachers and veteran teachers alike. Wormeli (2006) goes on to identifies ten eye opening approaches to avoid when grading. The ten approaches include: avoid incorporating nonacademic factors, avoid penalizing students for multiple attempts of mastery, avoid grading practice (homework), avoid withholding assistance, avoid assessing students in ways that do not accurately indicate their mastery, avoid extra credit, avoid group grades, avoid grading on a curve, avoid recording zeros for work not done, and finally avoid using norm-referenced terms to describe criterion-referenced attributes (pp. 113-129). The previous list of ten approaches lead to a standards-based grading approach.

Districts that are not ready to completely discard report cards have many other options in regards to revamping current grading practices. Matt Townsley (2014) recently described how he approaches meaningful grading in his article titled *Redesigning Grading—Districtwide*.
Townsley approached grading his mathematics classroom in a standards-referenced approach similar to the approach described by Marzano. Townsley based his new standards based approach on two different axioms First, Townsley (2014) reports learning targets rather than assignments, assessments, and behavior to his students (p. 68). The students are provided a list of all the standards they are expected to master at the beginning of Townsley’s course. As students complete classroom activities covering each standard, Townsley records their score of mastery on a scale of 0-4 in the gradebook. He uses pencil when recording scores as students are given the opportunity to improve their mastery. Thus, Townsley describes his gradebook as a “barometer of student learning” (Townsley, 2014, p. 68). At the end of a grading period, students grades are calculated by still averaging the student’s mastery of the standards addressed during the grading period (Townsley, 2014, p. 68). Townsley (2014) does not include effort, behavior, or attendance into the student’s overall grade (p. 68). The second axiom in which Townsley based his grading upon was to value what students learn over when they learn it (Townsley, 2014, p. 68). Townsley (2014) clearly describes the second axiom by stating, “Because learning does not always take place on a predetermined schedule, it’s important to value what students learn, regardless of when they learn it” (p. 69). Therefore, Townsley provides students multiple opportunities to demonstrate their understanding of each standard. Townsley’s approach to grading was supported by administration and fellow teachers alike. As stated in Redesigning Grading—Districtwide (2014), eighty-two percent of teachers within Townsley’s district were in favor and willing to take this approach with proper training (p. 70). An even more alarming percent from this study, seventy-five percent of students reported having a strong understanding of where they were at in their learning and the areas in which they need to continue to learn (Townsley, 2014, p. 71).
Another district in Minnesota described in an article titled *How Grading Reform Changed our School* how a standards-based grading approach was a must as teachers were being criticized for using practices that significantly distort the accuracy of the students’ grades (Erickson, 2011, p. 66). Prior to the grade reform, teachers would teach, test, and move on. Now the teachers are asked to answer the question, teach, test, and now what? The Minnetonka School District took all practices, ones that inflate and deflate grades, into consideration when developing their new policy for reporting student academic achievement (Erickson, 2011, p. 68). In this given district, their grading policy requires teachers to use two assessment categories---formative (not more than 15% of the grade) and summative (not less than 85% of the grade) (Erikson, 2011, p. 68).

The formative assessments as described by Erikson (2011) are activities that inform the students of their progress on mastering material that will be tested on upcoming summative assessments (p. 68). The summative assessments consist of four common assessments created by a team of teachers within the same content area (Erikson, 2011, p. 68). After each common assessment, Erikson (2011) says the teachers conduct an item analysis to identify which standards the students have and have not mastered, at which point the teachers either reteach the entire class or reteaches pockets of students (p. 68). Although this given district has only focused their grading strictly on academics, the district has seen a drastic increase in student achievement. Erikson (2011) reported that between 2006 and 2010 the ACT composite scores rose in this district from an average of 24.1 to an average of 25.7 and the Minnesota Comprehensive Reading Exam (grade 10) passing increased from 85.5 percent to 92.3 percent (p. 70). In addition, Erikson (2011) stated that the number of *Fs* in grades 9-12 has dropped 63 percent, and the number of *Ds* dropped 32 percent (p. 69).
Student data portfolios are also gaining popularity with those educators shifting their grading systems. Student portfolios are not necessarily part of the grading system but allow students to monitor, evaluate, and improve their own learning (Cruz & Zambo, 2013, p. 40). The student data notebooks are used in conjunction with standards-based grading. These notebooks require students to set goals, monitor their progress toward their goals, fine-tune and revise their learning strategies based on their progress, and evaluate obstacles that arise and change their behaviors and thinking to overcome these (Cruz & Zambo, 2013, p. 41). Cruz and Zambo (2013) reported on a study conducted in a school where student data portfolios were used to help raise student awareness in the achievement process (p. 41). The teachers and administrators were working harder than the students to raise student achievement, so the portfolios were used to involve the students in their own learning process (Cruz & Zambo, 2013, p. 41). In the given district, students are provided a three ring binder equipped with each student’s district and state, a printout of the state standards, and graph paper along with handouts on goal setting and a journal section (Cruz & Zambo, 2013, p. 42). The grades in which the students earned were reflected within their student data portfolio giving students ownership in the mastery of the standards.

Clearly, grading is an issue in the schools today. Rick Wormeli (2006) describes grades as the “elephant in the room” (p. 89). Teachers do not share their thoughts on the meaning of a C or an A, but educators, parents, and students all know there are issues surrounding the traditional grading system. In order to increase student achievement, educators must free themselves of complacency and work together to determine a better way to determine student mastery.
RESEARCH METHODS

Research design.

A quantitative study was conducted testing the relationship between classroom grading practices and scores on the MAP assessments in the area of mathematics. The independent variable being tested was classroom grades, while the dependent variable tested was Mathematics MAP scores. If the correlation of scores is found to be weak, teachers should be made aware of alternate grading practices to ensure a better understanding of student knowledge of a set of distinct learning objectives.

Study group description.

Forty-eight 7th and 8th grade students from a rural Missouri school district were selected at random. These students’ classroom averages in mathematics in 2012-2013 as well as their MAP scores in 2012-2013 were evaluated in this study. Students from multiple subgroups were selected; however, no students in the special education program or students considered at risk for needing special education services by the district were selected. Subgroups included in the study consist of students of various socioeconomic backgrounds including those receiving free and reduced lunch and students from both gender subgroups. There were two students from different ethnic backgrounds participating in this study, one Hispanic and one Asian/Pacific Islander; however, these ethnic groups are not taken into consideration when providing reports due to the small number of students in each group. In the given district, sixty-two total students in grades seventh and eighth took the mathematics MAP test during the 2012-2013 school year. Again, forty-eight students were used during this study. Of these forty-eight students, twenty-five were female while the other twenty-three were male. According to data collected on the DESE website (2014), 53 percent of students in seventh and eighth grades in the given district qualified for free
and reduced lunch services during the 2012-2013 school year. According to district officials, 63 percent of the students included in this study qualified for free and reduced lunch services. Thus, the study fairly represented the population of this rural Missouri school district according to data provided by the district and found on the DESE website (2014).

Data collection and instrumentation.

Archived data provided by the district found on Lumen, the student data system, as well as archived data from CTB/McGraw-Hill/DESE, including mathematics MAP scores was collected to identify correlations in classroom grades and MAP scores on mathematics assessments given in the 2012-2013 school year.

Statistical analysis methods.

A correlation analysis was conducted to find if there is a significant correlation between Mathematics MAP assessment scores and classroom grades. Classroom percentages were calculated by averaging the first and second semester percentages and were based on a 0-100 percent scale. MAP scores were reported in the form of raw scores with 7th grade scores ranging from 510-860 and 8th grade scores ranging from 525-885. The scale used to analyze the data was .00 to 1.00 where .00 to .39 indicated negligible correlation, .40 to .59 indicated a fair correlation, .60 to .79 indicated a moderate correlation, and .80 to 1.00 indicated a highly dependable correlation.
FINDINGS

A correlation analysis was conducted to determine if classroom grades in mathematics predict student performance on the MAP test. This test was conducted for the 2012-2013 school year, using archived data consisting of student semester grades as well as student MAP scores collected from CTB/McGraw-Hill/DESE. The findings have been organized in the following tables, charts, and graphs to help decipher the relationship between the two variables, student grades and test scores.

Figure 1: Correlation Study Classroom Grades and MAP Raw Scores

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>r</th>
<th>R²</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom Grade</td>
<td>48</td>
<td>83.35</td>
<td>0.62</td>
<td>38%</td>
<td>2.12E-6</td>
</tr>
<tr>
<td>MAP Test Score</td>
<td>48</td>
<td>701.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note significance = or < .25

As previously stated, forty-eight 7th and 8th grade students were selected at random. Their average class grade in mathematics was compared to their performance on the Missouri Assessment Program assessment in the area of mathematics using a correlation matrix. The null hypothesis states that there is no relationship between classroom grades in mathematics and MAP scores. As depicted in the chart above, the average classroom percentage for students in the 7th and 8th grades in the rural Missouri school studied was 83.35 percent while the average MAP raw score was 701.25. The study revealed a correlation coefficient (r) of 0.62 while the practicality (R²) was 38 percent. The p-value was a very low 2.12E-6. The correlation coefficient indicates there is moderate relationship between the two tested variables. The study also indicates a positive correlation between classroom grades and MAP assessment scores in this given classroom. Therefore, this study indicates as classroom grades increase MAP scores also increase. The practicality reported by this data was 38%. Thus, the degree of practicality is
deemed significant due to the fact of the percent being over 10 percent. As one can see below the table, the Alpha level was set at 0.25. Since the p-value of 2.12E-6 is lower than the set Alpha value of 0.25, the null hypothesis must be rejected. Therefore, this study indicates there is a relationship between classroom grades and MAP scores in this mathematics classroom.

Figure 2: Scatter Plot of Data

As depicted in figure 2, the correlation of the variables is positive as the class percentages increase, the MAP test scores also increase. This representation of the data not only displays the positive correlation, but it also indicates how the majority of the students score both in the classroom and on the MAP assessment. According to figure 2, the majority of the students appear to score an 80% on average on classroom work and the majority appear to score right around 700 on the MAP test. Below in Figures 3 and 4, the data is broken down even farther.
As one will notice from figure 3, half of the students scored in the 80-89% range on classroom activities. Thus, the majority of students earned a B on their classroom studies. In addition, approximately 20 percent of students earned 70-79 percent while another 20 percent earned 90-100 percent. Leaving 6 percent to score in the 60-69 percent range. Therefore, in this given study, 94 percent of the students demonstrated an average or greater understanding of the state standards taught within this mathematics class. But, how does that compare to how the same group of students scored on the state MAP assessment? Take a look at Figure 4 to see these results.
Figure 4 breaks down the proficiency level scored by the forty-eight students in this study. According to the State of Missouri and No Child Left Behind, in order for a student to “pass” the test, he or she must earn a ranking of proficient or higher. According to the previous statement and the data collected for this survey, only 60 percent of students within this survey should have a passing grade as only 60 percent of the students scored proficient or advanced on the mathematics MAP assessment. Although some students, 6 percent to be exact, received grades lower than a 70 percent in the mathematics classroom, the study indicated that more students should be receiving lower grades than what they did in this given school year based on their level of mastery on the MAP assessment.
CONCLUSIONS AND RECOMMENDATIONS

In conclusion, this study has proven that in some given classrooms the traditional grading system is an effective way to determine student success on MAP assessments. The p-value was a very low 2.12E-6 indicating the null hypothesis can be rejected with confidence in this study. Indicating that the current grading system is an indicator of student success on the MAP assessment. However, with the subjectivity of the current trends in grading and the different ideas as to what mastery is, the data could very well be skewed and not a direct indicator of student success. Thus, conducting this study in each individual classroom to determine the subjectivity of the grades would be beneficial to any and all teachers and/or administrators questioning the traditional grading system.

Research by many top educational researchers indicate a need for reforming current grading practices. Teachers are placing too many non-mastery skills such as participation, attendance, behavior, neatness, etc. into their day to day grades. This is not only setting some students up for failure, it is not depicting a student’s level of content mastery. It is vital as an educator to eliminate all factors in the realm of grading that are not relevant to demonstrating a student’s knowledge of the state standards. More importantly as an administrator it important to question teachers about their grading policies and understand each teacher’s perspective on grading. Even more important, professional development time will be an ideal time to discuss and revamp grading practices as teachers will need to support each other and be provided support to make this change.

Do not let grading remain to be the “elephant in the room” that everyone is afraid to discuss. As shown in this study, some teacher’s current grading practices work. Use the knowledgeable teachers to help guide others in the implementation of more effective practices.
As demonstrated in the Review of Literature section, there are many different ways to approach grading reform. Marzano (2010) had some very extreme measures in which many districts, administrators, and teachers would not be comfortable implementing; however, there is much research out there regarding grading practices that base teaching on student achievement which in turn rises student achievement.

One recommendation for implementing a new grading process is to take baby steps. In an article titled *Eight Steps to Meaningful Grading*, Deddeh, Main, & Faulkerson (2010) provide eight steps to approaching the issue of grading which include: educating yourself, do not go it alone, chart a course of action, organize instruction, practice before assessing, evaluate the performance, give second chances, and keep records (pp. 54-58). Notice the first step is not jump into a new waters with no plan. Switching grading practices will require a shift in mindset which could take months and even years for some. Although beginning the discussion of revamping the traditional grading systems is a daunting task, the discussion needs to take place sooner rather than later. Some grades are doing the students, parents, and other stakeholders no good as they are not a true indicator of what the student truly is capable of demonstrating.
REFERENCES

